

Contents

0.1 Preface . 1

1 Unnoticed basics 3

2 Logging and error handling 5
2.1 Logging: problems and solutions 5

3 Web essentials 11
3.1 URLs with variable number of parameters 11
3.2 Working with different response types 12
3.3 Managing cookies . 17
3.4 Handling incoming third party POST requests 19

4 SEO essentials 23
4.1 Enable pretty URLs . 23
4.2 Pagination pretty URLs . 24
4.3 Adding SEO tags . 25
4.4 Canonical URLs . 26
4.5 Using redirects . 27
4.6 Using slugs . 28
4.7 Handling trailing slash in URLs 30

5 Forms 33
5.1 Using and customizing CAPTCHA 33
5.2 Working with ActiveForm via JavaScript 36
5.3 Uploading files . 38
5.4 Custom validator for multiple attributes 41

6 Security 47
6.1 SQL injection . 47
6.2 XSS . 48
6.3 RBAC . 49
6.4 CSRF . 56

iii

iv CONTENTS

7 Structuring and organizing code 59
7.1 Structure: backend and frontend via modules 59
7.2 Asset processing with Grunt 60
7.3 Using global functions . 64
7.4 Processing text . 65
7.5 Implementing typed collections 66
7.6 MVC . 68
7.7 SOLID . 69
7.8 Dependencies . 70

8 View 73
8.1 Reusing views via partials . 73
8.2 Switching themes dynamically 75
8.3 Post-processing response . 76

9 Models 77

10 Active Record 79
10.1 Single table inheritance . 79

11 i18n 83
11.1 Selecting application language 83
11.2 Using IDs as translation source 87

12 Performance 89
12.1 Implementing backgroud tasks (cronjobs) 89
12.2 Running Yii 2.0 on HHVM 90
12.3 Caching . 92
12.4 Configuring a Yii2 Application for an Multiple Servers Stack . 93

13 External code 97
13.1 Using Yii in third party apps 97

14 Tools 101
14.1 IDE autocompletion for custom components 101
14.2 Using custom migration template 103

0.1. PREFACE 1

0.1 Preface

Yii is a high-performance PHP framework designed from the ground up to
develop modern web applications and APIs that can run in a multi-device
environment.

Yii comes with rich set of features including MVC, ActiveRecord, I18N/L10N,
caching, authentication and role-based access control, code generation, test-
ing, and REST based API framework. Together with a comprehensive set
of documentation and a enthusiastic user community Yii can reduce your
development time significantly compared with other frameworks.

0.1.1 What’s the book about?

This book is for you if you’re familiar with Yii 2.0 and building Yii ap-
plications plus familiar with the official Yii guide. It covers fundamentally
important Yii concepts and dives into subjects that will help you develop
even faster, more reliable Yii applications.

The book consists of individual recipes gathered from Yii experts that
you can apply in your applications. Recipes are grouped by chapter but you
are free to read them in any order as there is no dependency between them.

0.1.2 Prerequisites

• You should have Yii 2.0 installed1.
• You should be familiar with the framework basics and the official

guide2.

0.1.3 How to participate

If you’ve found any errata, incorrect information, know how to improve some-
thing or have a good recipe for the book, either create an issue or make a
pull request in the book github repository3.

1http://www.yiiframework.com/doc-2.0/guide-start-installation.html
2http://www.yiiframework.com/doc-2.0/guide-README.html
3https://github.com/samdark/yii2-cookbook

http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://www.yiiframework.com/doc-2.0/guide-README.html
https://github.com/samdark/yii2-cookbook

2 CONTENTS

Chapter 1

Unnoticed basics

3

4 CHAPTER 1. UNNOTICED BASICS

Chapter 2

Logging and error handling

2.1 Logging: problems and solutions

Logging in Yii is really flexible. Basics are easy but sometimes it takes time
to configure everything to get what you want. There are some ready to use
solutions collected below. Hopefully you’ll find what you’re looking for.

2.1.1 Write 404 to file and send the rest via email

404 not found happens too often to email about it. Still, having 404s logged
to a file could be useful. Let’s implement it.
’components’ => [

’log’ => [
’targets’ => [

’file’ => [
’class’ => ’yii\log\FileTarget’,
’categories’ => [’yii\web\HttpException:404’],
’levels’ => [’error’, ’warning’],
’logFile’ => ’@runtime/logs/404.log’,

],
’email’ => [

’class’ => ’yii\log\EmailTarget’,
’except’ => [’yii\web\HttpException:404’],
’levels’ => [’error’, ’warning’],
’message’ => [’from’ => ’robot@example.com’, ’to’ => ’

admin@example.com’],
],

],
],

],

When there’s unhandled exception in the application Yii logs it additionally
to displaying it to end user or showing customized error page. Exception
message is what actually to be written and the fully qualified exception
class name is the category we can use to filter messages when configuring
targets. 404 can be triggered by throwing yii\web\NotFoundHttpException or

5

6 CHAPTER 2. LOGGING AND ERROR HANDLING

automatically. In both cases exception class is the same and is inherited
from \yii\web\HttpException which is a bit special in regards to logging. The
speciality is the fact that HTTP status code prepended by : is appended to
the end of the log message category. In the above we’re using categories to
include and except to exclude 404 log messages.

2.1.2 Immediate logging

By default Yii accumulates logs till the script is finished or till the number
of logs accumulated is enough which is 1000 messages by default for both
logger itself and log target. It could be that you want to log messages
immediately. For example, when running an import job and checking logs
to see the progress. In this case you need to change settings via application
config file:

’components’ => [
’log’ => [

’flushInterval’ => 1, // <-- here
’targets’ => [

’file’ => [
’class’ => ’yii\log\FileTarget’,
’levels’ => [’error’, ’warning’],
’exportInterval’ => 1, // <-- and here

],
],

]
]

2.1.3 Write different logs to different files

Usually a program has a lot of functions. Sometimes it is necessary to
control these functions by logging. If everything is logged in one file this
file becomes too big and too difficult to maintain. Good solution is to write
different functions logs to different files.

For example you have two functions: catalog and basket. Let’s write logs
to catalog.log and basket.log respectively. In this case you need to establish
categories for your log messages. Make a connection between them and log
targets by changing application config file:

’components’ => [
’log’ => [

’targets’ => [
[

’class’ => ’yii\log\FileTarget’,
’categories’ => [’catalog’],
’logFile’ => ’@app/runtime/logs/catalog.log’,

],
[

’class’ => ’yii\log\FileTarget’,

2.1. LOGGING: PROBLEMS AND SOLUTIONS 7

’categories’ => [’basket’],
’logFile’ => ’@app/runtime/logs/basket.log’,

],
],

]
]

After this you are able to write logs to separate files adding category name
to log function as second parameter. Examples:

\Yii::info(’catalog info’, ’catalog’);
\Yii::error(’basket error’, ’basket’);
\Yii::beginProfile(’add to basket’, ’basket’);
\Yii::endProfile(’add to basket’, ’basket’);

2.1.4 Disable logging of youself actions

Problem

You want to receive email when new user signs up. But you don’t want to
trace yourself sign up tests.

Solution

At first mark logging target inside config.php by key: ‘php ‘log’ => [

// ...
’targets’ => [

// email is a key for our target
’email’ => [

’class’ => ’yii\log\EmailTarget’,
’levels’ => [’info’],
’message’ => [’from’ => ’robot@example.com’, ’to’ => ’

admin@example.com’],
],

// ...

Then, for example, inside ‘Controller‘ ‘beforeAction‘ you can create a
condition:

‘‘‘php
public function beforeAction($action)
{

// ’127.0.0.1’ - replace by your IP address
if (in_array(@$_SERVER[’REMOTE_ADDR’], [’127.0.0.1’])) {

Yii::$app->log->targets[’email’]->enabled = false; // Here we
disable our log target

}
return parent::beforeAction($action);

}

8 CHAPTER 2. LOGGING AND ERROR HANDLING

2.1.5 Log everything but display different error messages

Problem

You want to log concrete server error but display only broad error explana-
tion to the end user.

Solution

If you catch an error appropriate log target doesn’t work. Let’s say you have
such log target configuration: ‘php ‘components’ => [
’log’ => [

’targets’ => [
’file’ => [

’class’ => ’yii\log\FileTarget’,
’levels’ => [’error’, ’warning’],
’logFile’ => ’@runtime/logs/error.log’,

],
],

],

], ‘
As an example let’s add such code line inside actionIndex: ‘php

public function actionIndex()
{

throw new ServerErrorHttpException(’Hey! Coding problems!’);
// ...

Go to ‘index‘ page and you will see this message in the browser and in the ‘
error.log‘ file.

Let’s modify our ‘actionIndex‘:

‘‘‘php
public function actionIndex()
{

try {
throw new ServerErrorHttpException(’Hey! Coding problems!’); //

here is our code line now
}
catch(ServerErrorHttpException $ex) {

Yii::error($ex->getMessage()); // concrete message for us
throw new ServerErrorHttpException(’Server problem, sorry.’); //

broad message for the end user
}

// ..

As the result in the browser you will see Server problem, sorry.. But in the
error.log you will see both error messages. In our case second message is
not necessary to log.

Let’s add category for our log target and for logging command.

2.1. LOGGING: PROBLEMS AND SOLUTIONS 9

For config: ‘php ‘file’ => [
’class’ => ’yii\log\FileTarget’,
’levels’ => [’error’, ’warning’],
’categories’ => [’serverError’], // category is added
’logFile’ => ’@runtime/logs/error.log’,

], For ‘actionIndex‘:php catch(ServerErrorHttpException $ex) {
Yii::error($ex->getMessage(), ’serverError’); // category is added
throw new ServerErrorHttpException(’Server problem, sorry.’);

} ‘

As the result in the error.log you will see only the error related to Hey!

Coding problems!.

Even more

If there is an bad request (user side) error you may want to display error
message ‘as is’. You can easily do it because our catch block works only for
ServerErrorHttpException error types. So you are able to throw something like
this: ‘php throw new BadRequestHttpException(’Email address you provide
is invalid’); ‘ As the result end user will see the message ‘as is’ in his browser.

2.1.6 See also

• Yii2 guide - handling Errors1.
• Yii2 guide - logging2.

1http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html
2http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html

http://www.yiiframework.com/doc-2.0/guide-runtime-handling-errors.html
http://www.yiiframework.com/doc-2.0/guide-runtime-logging.html

10 CHAPTER 2. LOGGING AND ERROR HANDLING

Chapter 3

Web essentials

3.1 URLs with variable number of parameters

There are many cases when you need to get variable number of paramet-
ers via URL. For example one may want URLs such as http://example.com

/products/cars/sport to lead to ProductController::actionCategory where it’s
expected to get an array containing cars and sport.

3.1.1 Get Ready

First of all, we need to enable pretty URLs. In the application config file
add the following:
$config = [

// ...
’components’ => [

// ...
’urlManager’ => [

’showScriptName’ => false,
’enablePrettyUrl’ => true,
’rules’ => require ’urls.php’,

],
]

Note that we’re including separate file instead of listing rules directly. It is
helpful when application grows large.

Now in config/urls.php add the following content:
<?php
return [

[
’pattern’ => ’products/<categories:.*>’,
’route’ => ’product/category’,
’encodeParams’ => false,

],
];

Create ProductController:

11

12 CHAPTER 3. WEB ESSENTIALS

namespace app\controllers;

use yii\web\Controller;

class ProductController extends Controller
{

public function actionCategory($categories)
{

$params = explode(’/’, $categories);
print_r($params);

}
}

That’s it. Now you can try http://example.com/products/cars/sport. What
you’ll get is
Array ([0] => cars [1] => sport)

3.2 Working with different response types

Web and mobile applications are more than just rendered HTML nowadays.
Modern architecture moves the UI to the client, where all user interactions
are handled by the client-side, utilizing server APIs to drive the frontend.
The JSON and XML formats are often used for serializing and transmitting
structured data over a network, so the ability to create such responses is a
must for any modern server framework.

3.2.1 Response formats

As you probably know, in Yii2 you need to return the result from your action,
instead of echoing it directly:
// returning HTML result
return $this->render(’index’, [

’items’ => $items,
]);

Good thing about it is now you can return different types of data from your
action, namely:

• an array
• an object implementing Arrayable interface
• a string
• an object implementing __toString() method.

Just don’t forget to tell Yii what format do you want as result, by setting
\Yii::$app->response->format before return. For example: ‘php \Yii::$app-
>response->format = \yii\web\Response::FORMAT_JSON; ‘

Valid formats are:
• FORMAT_RAW
• FORMAT_HTML

3.2. WORKING WITH DIFFERENT RESPONSE TYPES 13

• FORMAT_JSON
• FORMAT_JSONP
• FORMAT_XML

Default is FORMAT_HTML.

3.2.2 JSON response

Let’s return an array:

public function actionIndex()
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
$items = [’some’, ’array’, ’of’, ’data’ => [’associative’, ’array’]];
return $items;

}

And - voila! - we have JSON response right out of the box:
Result

{
"0": "some",
"1": "array",
"2": "of",
"data": ["associative", "array"]

}

Note: you’ll get an exception if response format is not set.
As we already know, we can return objects too.

public function actionView($id)
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
$user = \app\models\User::find($id);
return $user;

}

Now $user is an instance of ActiveRecord class that implements Arrayable

interface, so it can be easily converted to JSON:
Result ‘json {

"id": 1,
"name": "John Doe",
"email": "john@example.com"

} ‘

We can even return an array of objects:

public function actionIndex()
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_JSON;
$users = \app\models\User::find()->all();
return $users;

}

14 CHAPTER 3. WEB ESSENTIALS

Now $users is an array of ActiveRecord objects, but under the hood Yii
uses \yii\helpers\Json::encode() that traverses and converts the passed data,
taking care of types by itself:

Result

[
{

"id": 1,
"name": "John Doe",
"email": "john@example.com"

},
{

"id": 2,
"name": "Jane Foo",
"email": "jane@example.com"

},
...

]

3.2.3 XML response

Just change response format to FORMAT_XML and that’t it. Now you have XML:

public function actionIndex()
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_XML;
$items = [’some’, ’array’, ’of’, ’data’ => [’associative’, ’array’]];
return $items;

}

Result

<response>
<item>some</item>
<item>array</item>
<item>of</item>
<data>

<item>associative</item>
<item>array</item>

</data>
</response>

And yes, we can convert objects and array of objects the same way as we
did before.

public function actionIndex()
{

\Yii::$app->response->format = \yii\web\Response::FORMAT_XML;
$users = \app\models\User::find()->all();
return $users;

}

Result:

3.2. WORKING WITH DIFFERENT RESPONSE TYPES 15

<response>
<User>

<id>1</id>
<name>John Doe</name>
<email>john@example.com</email>

</User>
<User>

<id>2</id>
<name>Jane Foo</name>
<email>jane@example.com</email>

</User>
</response>

3.2.4 Custom response format

Let’s create a custom response format. To make example a bit fun and crazy
we’ll respond with PHP arrays.

First of all, we need formatter itself. Create components/PhpArrayFormatter

.php:

<?php
namespace app\components;

use yii\helpers\VarDumper;
use yii\web\ResponseFormatterInterface;

class PhpArrayFormatter implements ResponseFormatterInterface
{

public function format($response)
{

$response->getHeaders()->set(’Content-Type’, ’text/php; charset=UTF-
8’);

if ($response->data !== null) {
$response->content = "<?php\nreturn " . VarDumper::export(

$response->data) . ";\n";
}

}
}

Now we need to registed it in application config (usually it’s config/web.php):

return [
// ...
’components’ => [

// ...
’response’ => [

’formatters’ => [
’php’ => ’app\components\PhpArrayFormatter’,

],
],

],
];

16 CHAPTER 3. WEB ESSENTIALS

Now it’s ready to be used. In controllers/SiteController create a new method
actionTest:
public function actionTest()
{

Yii::$app->response->format = ’php’;
return [

’hello’ => ’world!’,
];

}

That’s it. After executing it, Yii will respond with the following:
<?php
return [

’hello’ => ’world!’,
];

3.2.5 Choosing format based on content type requested

You can use the ContentNegotiator controller filter in order to choose format
based on what is requested. In order to do so you need to implement behaviors
method in controller:
public function behaviors()
{

return [
// ...
’contentNegotiator’ => [

’class’ => \yii\filters\ContentNegotiator::className(),
’only’ => [’index’, ’view’],
’formatParam’ => ’_format’,
’formats’ => [

’application/json’ => \yii\web\Response::FORMAT_JSON,
’application/xml’ => \yii\web\Response::FORMAT_XML,

],
],

];
}

public function actionIndex()
{

$users = \app\models\User::find()->all();
return $users;

}

public function actionView($id)
{

$user = \app\models\User::findOne($id);
return $user;

}

That’s it. Now you can test it via the following URLs:
• /index.php?r=user/index&_format=xml

3.3. MANAGING COOKIES 17

• /index.php?r=user/index&_format=json

3.3 Managing cookies

Managing HTTP cookies isn’t that hard using plain PHP but Yii makes it
a bit more convenient. In this recipe we’ll describe how to perform typical
cookie actions.

3.3.1 Setting a cookie

To set a cookie i.e. to create it and schedule for sending to the browser
you need to create new \yii\web\Cookie class instance and add it to response
cookies collection:

$cookie = new Cookie([
’name’ => ’cookie_monster’,
’value’ => ’Me want cookie!’,
’expire’ => time() + 86400 * 365,

]);
\Yii::$app->getResponse()->getCookies()->add($cookie);

In the above we’re passing parameters to cookie class constructor. These
basically the same as used with native PHP setcookie1 function:

• name - name of the cookie.
• value - value of the cookie. Make sure it’s a string. Browsers typically

aren’t happy about binary data in cookies.
• domain - domain you’re setting the cookie for.
• expire - unix timestamp indicating time when the cookie should be

automatically deleted.
• path - the path on the server in which the cookie will be available on.
• secure - if true, cookie will be set only if HTTPS is used.
• httpOnly - if true, cookie will not be available via JavaScript.

3.3.2 Reading a cookie

In order to read a cookie use the following code:

$value = \Yii::$app->getRequest()->getCookies()->getValue(’my_cookie’);

3.3.3 Where to get and set cookies?

Cookies are part of HTTP request so it’s a good idea to do both in controller
which responsibility is exactly dealing with request and response.

1http://php.net/manual/en/function.setcookie.php

http://php.net/manual/en/function.setcookie.php

18 CHAPTER 3. WEB ESSENTIALS

3.3.4 Cookies for subdomains

Because of security reasons, by default cookies are accessible only on the same
domain from which they were set. For example, if you have set a cookie on
domain example.com, you cannot get it on domain www.example.com. So if you’re
planning to use subdomains (i.e. admin.example.com, profile.example.com),
you need to set domain explicitly:
$cookie = new Cookie([

’name’ => ’cookie_monster’,
’value’ => ’Me want cookie everywhere!’,
’expire’ => time() + 86400 * 365,
’domain’ => ’.example.com’ // <<<=== HERE

]);
\Yii::$app->getResponse()->getCookies()->add($cookie);

Now cookie can be read from all subdomains of example.com.

3.3.5 Cross-subdomain authentication and identity cookies

In case of autologin or “remember me” cookie, the same quirks as in case of
subdomain cookies are applying. But this time you need to configure user
component, setting identityCookie array to desired cookie config.

Open you application config file and add identityCookie parameters to
user component configuration:
$config = [

// ...
’components’ => [

// ...
’user’ => [

’class’ => ’yii\web\User’,
’identityClass’ => ’app\models\User’,
’enableAutoLogin’ => true,
’loginUrl’ => ’/user/login’,
’identityCookie’ => [// <---- here!

’name’ => ’_identity’,
’httpOnly’ => true,
’domain’ => ’.example.com’,

],
],
’request’ => [

’cookieValidationKey’ => ’your_validation_key’
],
’session’ => [

’cookieParams’ => [
’domain’ => ’.example.com’,
’httpOnly’ => true,

],
],

],
];

3.4. HANDLING INCOMING THIRD PARTY POST REQUESTS 19

Note that cookieValidationKey should be the same for all sub-domains.
Note that you have to configure the session::cookieParams property to

have the samedomain as your user::identityCookie to ensure the login and
logout work for all subdomains. This behavior is better explained on the
next section.

3.3.6 Session cookie parameters

Session cookies parameters are important both if you have a need to maintain
session while getting from one subdomain to another or when, in contrary,
you host backend app under /admin URL and want handle session separately.

$config = [
// ...
’components’ => [

// ...
’session’ => [

’name’ => ’admin_session’,
’cookieParams’ => [

’httpOnly’ => true,
’path’ => ’/admin’,

],
],

],
];

3.3.7 See also

• API reference2

• PHP documentation3

• RFC 62654

3.4 Handling incoming third party POST requests

By default Yii uses CSRF protection that verifies that POST requests could
be made only by the same application. It enhances overall security signi-
ficantly but there are cases when CSRF should be disabled i.e. when you
expect incoming POST requests from a third party service.

Additionally, if third party is posting via XMLHttpRequest (browser
AJAX), we need to send additional headers to allow CORS (cross-origin
resource sharing5).

2http://stuff.cebe.cc/yii2docs/yii-web-cookie.html
3http://php.net/manual/en/function.setcookie.php
4http://www.faqs.org/rfcs/rfc6265.html
5https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

http://stuff.cebe.cc/yii2docs/yii-web-cookie.html
http://php.net/manual/en/function.setcookie.php
http://www.faqs.org/rfcs/rfc6265.html
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

20 CHAPTER 3. WEB ESSENTIALS

3.4.1 How to do it

First of all, never disable CSRF protection altogether. If you need it to be
disabled, do it for specific controller or even controller action.

Disabling CSRF for a specific controller

Disabling protection for specific controller is easy:

class MyController extends Controller
{

public $enableCsrfValidation = false;

We’ve added a public property enableCsrfValidation and set it to false.

Disabling CSRF for specific controller action

In case of disabling only a single action it’s a bit more code:

class MyController extends Controller
{

public function beforeAction($action)
{

if (in_array($action->id, [’incoming’])) {
$this->enableCsrfValidation = false;

}
return parent::beforeAction($action);

}

We’ve implemented beforeAction controller method. It is invoked right before
an action is executed so we’re checking if executed action id matches id of
the action we want to disable CSRF protection for and, if it’s true, disabling
it. Note that it’s important to call parent method and call it last.

Sending CORS headers

Yii has a special Cors filter6 that allows you sending headers required to
allow CORS.

To allow AJAX requests to the whole controller you can use it like that:

class MyController extends Controller
{

public function behaviors()
{

return [
’corsFilter’ => [

’class’ => \yii\filters\Cors::className(),
],

];
}

6http://www.yiiframework.com/doc-2.0/yii-filters-cors.html

http://www.yiiframework.com/doc-2.0/yii-filters-cors.html

3.4. HANDLING INCOMING THIRD PARTY POST REQUESTS 21

In order to do it for a specific action, use the following:
class MyController extends Controller
{

public function behaviors()
{

return [
’corsFilter’ => [

’class’ => \yii\filters\Cors::className(),
’cors’ => [],
’actions’ => [

’incoming’ => [
’Origin’ => [’*’],
’Access-Control-Request-Method’ => [’GET’, ’POST’, ’

PUT’, ’PATCH’, ’DELETE’, ’HEAD’, ’OPTIONS’],
’Access-Control-Request-Headers’ => [’*’],
’Access-Control-Allow-Credentials’ => null,
’Access-Control-Max-Age’ => 86400,
’Access-Control-Expose-Headers’ => [],

],
],

],
];

}

22 CHAPTER 3. WEB ESSENTIALS

Chapter 4

SEO essentials

4.1 Enable pretty URLs

Sometimes users want to share your site URLs via social networks. For
example, by default your about page URL looks like http://webproject.ru/

index.php?r=site%2Fabout. Let’s imagine this link on Facebook page. Do you
want to click on it? Most of users have no idea what is index.php and what
is %2. They trust such link less, so will click less on it. Thus web site owner
would lose traffic.

URLs such as the following is better: http://webproject.ru/about. Every
user can understand that it is a clear way to get to about page.

Let’s enable pretty URLs for our Yii project.

4.1.1 Apache Web server configuration

If you’re using Apache you need an extra step. Inside your .htaccess file in
your webroot directory or inside location section of your main Apache config
add the following lines:
RewriteEngine on
If a directory or a file exists, use it directly
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_FILENAME} !-d
Otherwise forward it to index.php
RewriteRule . index.php

4.1.2 URL manager configuration

Configure urlManager component in your Yii config file:
’components’ => [

// ...
’urlManager’ => [

’class’ => ’yii\web\UrlManager’,
// Hide index.php

23

24 CHAPTER 4. SEO ESSENTIALS

’showScriptName’ => false,
// Use pretty URLs
’enablePrettyUrl’ => true,
’rules’ => [
],

],
// ...

],

Remove site parameter from URL

After previous steps you will get http://webproject.ru/site/about link. site

parameter tells nothing helpful to your users. So remove it by additional
urlManager rule:

’rules’ => [
’<alias:\w+>’ => ’site/<alias>’,

],

As a result your URL will looks like http://webproject.ru/about.

4.2 Pagination pretty URLs

For example we can render our site content by GridView. If there are a lot of
content rows we use pagination. And it is necessary to provide GET request
for every pagination page. Thus search crawlers can index our content. We
also need our URLs to be pretty. Let’s do it.

4.2.1 Initial state

For example we have a page with such URL http://example.com/schools/

schoolTitle. Parameter schoolTitle is a title parameter for our request.
For details see this recipe1.

In the application config file we have: ‘php $config = [
// ...
’components’ => [

// ...
’urlManager’ => [

’showScriptName’ => false,
’enablePrettyUrl’ => true,
’rules’ => [

’schools/<title:\w+>’ => ’site/schools’,
],

],
// ...

],
// ...

1https://github.com/samdark/yii2-cookbook/blob/master/book/
urls-variable-number-of-parameters.md

https://github.com/samdark/yii2-cookbook/blob/master/book/urls-variable-number-of-parameters.md
https://github.com/samdark/yii2-cookbook/blob/master/book/urls-variable-number-of-parameters.md

4.3. ADDING SEO TAGS 25

We decided to add a GridView on the page ‘http://example.com/schools/
schoolTitle‘.

Pagination pretty URLs

When we click on pagination link our URL is transformed to ‘http://example.

com/schools/schoolTitle?page=2‘.
We want our pagination link looks like ‘http://example.com/schools/

schoolTitle/2‘.

Let’s add new urlManager rule **higher than** existed rule. Here it is:
‘‘‘php
$config = [

// ...
’urlManager’ => [

// ...
’rules’ => [

’schools/<title:\w+>/<page:\d+>’ => ’site/schools’, // new
rule

’schools/<title:\w+>’ => ’site/schools’,
],

],
// ...

4.3 Adding SEO tags

Organic search is an excellent traffic source. In order to get it you have to
make a lot of small steps to improve your project.

One of such steps is to provide different meta tags for different pages. It
will improve your site organic search appearance and may result in better
ranking.

Let’s review how to add SEO-related metadata to your pages.

4.3.1 Title

It is very simple to set title. Inside controller action:
\Yii::$app->view->title = ’title set inside controller’;

Inside a view:
$this->title = ’Title from view’;

Note: Setting $this->title in layout will override value which is
set for concrete view so don’t do it.

It’s a good idea to have default title so inside layout you can have something
like the following:
$this->title = $this->title ? $this->title : ’default title’;

26 CHAPTER 4. SEO ESSENTIALS

4.3.2 Description and Keywords

There are no dedicated view parameters for keywords or description. Since
these are meta tags and you should set them by registerMetaTag() method.

Inside controller action:

\Yii::$app->view->registerMetaTag([
’name’ => ’description’,
’content’ => ’Description set inside controller’,

]);
\Yii::$app->view->registerMetaTag([

’name’ => ’keywords’,
’content’ => ’Keywords set inside controller’,

]);

Inside a view:

$this->registerMetaTag([
’name’ => ’description’,
’content’ => ’Description set inside view’,

]);
$this->registerMetaTag([

’name’ => ’keywords’,
’content’ => ’Keywords set inside view’,

]);

All registered meta tags will be rendered inside layout in place of $this->head
() call.

Note that when the same tag is registered twice it’s rendered twice. For
example, description meta tag that is registered both in layout and a view is
rendered twice. Usually it’s not good for SEO. In order to avoid it you can
specify key as the second argument of registerMetaTag:

$this->registerMetaTag([
’name’ => ’description’,
’content’ => ’Description 1’,

], ’description’);

$this->registerMetaTag([
’name’ => ’description’,
’content’ => ’Description 2’,

], ’description’);

In this case later second call will overwrite first call and description will be
set to “Description 2”.

4.4 Canonical URLs

Because of many reasons the same or nearly the same page content often is
accessible via multiple URLs. There are valid cases for it such as viewing
an article within a category and not so valid ones. For end user it doesn’t
really matter much but still it could be a problem because of search engines

4.5. USING REDIRECTS 27

because either you might get wrong URLs preferred or, in the worst case,
you might get penalized.

One way to solve it is to mark one of URLs as a primary or, as it called,
canonical, one you may use <link rel="canonical" tag in the page head.

Note: In the above we assume that pretty URLs are enabled.

Let’s imagine we have two pages with similar or nearly similar content:
• http://example.com/item1

• http://example.com/item2

Our goal is to mark first one as canonical. Another one would be still ac-
cessible to end user. The process of adding SEO meta-tags is descibed in
“adding SEO tags“ recipe. Adding <link rel="canonical" is very similar. In
order to do it from controller action you may use the following code:
\Yii::$app->view->registerLinkTag([’rel’ => ’canonical’, ’href’ => Url::to([

’item1’], true)]);

In order to achieve the same from inside the view do it as follows:
$this->registerLinkTag([’rel’ => ’canonical’, ’href’ => Url::to([’item1’],

true)]);

Note: It is necessary to use absolute paths instead of relative
ones.

As an alternative to Url::to() you can use Url::canonical() such as
$this->registerLinkTag([’rel’ => ’canonical’, ’href’ => Url::canonical()]);

The line above could be added to layout. Url::canonical() generates the tag
based on current controller route and action parameters (the ones present in
the method signature).

4.4.1 See also

• Google article about canonical URLs2.

4.5 Using redirects

4.5.1 301

Let’s imagine we had a page http://example.com/item2 but then permanently
moved content to http://example.com/item1. There is a good chance that
some users (or search crawlers) have already saved http://example.com/item2

via bookmarks, database, web site article, etc. Because of that we can’t just
remove http://webproject.ru/item2.

In this case use 301 redirect.
2https://support.google.com/webmasters/answer/139066?hl=en

https://support.google.com/webmasters/answer/139066?hl=en

28 CHAPTER 4. SEO ESSENTIALS

class MyController extends Controller
{

public function beforeAction($action)
{

if (in_array($action->id, [’item2’])) {
Yii::$app->response->redirect(Url::to([’item1’]), 301);
Yii::$app->end();

}
return parent::beforeAction($action);

}

For further convenience you can determine an array. So if you need to redirect
another URL then add new key=>value pair:
class MyController extends Controller
{

public function beforeAction($action)
{

$toRedir = [
’item2’ => ’item1’,
’item3’ => ’item1’,

];

if (isset($toRedir[$action->id])) {
Yii::$app->response->redirect(Url::to([$toRedir[$action->id]]),

301);
Yii::$app->end();

}
return parent::beforeAction($action);

}

4.5.2 See also

• Handling trailing slash in URLs.

4.6 Using slugs

Even when pretty URLs are enabled, these often aren’t looking too friendly:
http://example.com/post/42

Using Yii it doesn’t take much time to make URLs look like the following:
http://example.com/post/hello-world

4.6.1 Preparations

Set up database to use with Yii, create the following table:
post
====

id

4.6. USING SLUGS 29

title
content

Generate Post model and CRUD for it using Gii.

4.6.2 How to do it

Add slug field to post table that holds our posts. Then add sluggable behavior
to the model:
<?php
use yii\behaviors\SluggableBehavior;

// ...

class Post extends ActiveRecord
{

// ...

public function behaviors()
{

return [
[

’class’ => SluggableBehavior::className(),
’attribute’ => ’title’,

],
];

}

// ...
}

Now when post is created slug in database will be automatically filled.
We need to adjust controller. Add the following method:

protected function findModelBySlug($slug)
{

if (($model = Post::findOne([’slug’ => $slug])) !== null) {
return $model;

} else {
throw new NotFoundHttpException();

}
}

Now adjust view action:
public function actionView($slug)
{

return $this->render(’view’, [
’model’ => $this->findModelBySlug($slug),

]);
}

Now in order to create a link to the post you have to pass slug into it like
the following:

30 CHAPTER 4. SEO ESSENTIALS

echo Url::to([’post/view’, ’slug’ => $post->slug]);

4.6.3 Handling title changes

There are be multiple strategies to deal with situation when title is changed.
One of these is to include ID in the title and use it to find a post.

http://example.com/post/42/hello-world

4.7 Handling trailing slash in URLs

By default Yii handles URLs without trailing slash and gives out 404 for
URLs with it. It is a good idea to choose either using or not using slash but
handling both and doing 301 redirect from one variant to another.

For example,

/hello/world - 200
/hello/world/ - 301 redirect to /hello/world

4.7.1 Using UrlNormalizer

Since Yii 2.0.10 there’s UrlNormalizer class you can use to deal with slash and
no-slash URLs in a very convenient way. Check out the “URL normaliza-
tion3“ section in the official guide for details.

4.7.2 Redirecting via web server config

Besides PHP, there’s a way to achieve redirection using web server.

4.7.3 Redirecting via nginx

Redirecting to no-slash URLs.

location / {
rewrite ^(.*)/$ $1 permanent;
try_files $uri $uri/ /index.php?$args;

}

Redirecting to slash URLs.

location / {
rewrite ^(.*[^/])$ $1/ permanent;
try_files $uri $uri/ /index.php?$args;

}

3http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#
url-normalization

http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#url-normalization
http://www.yiiframework.com/doc-2.0/guide-runtime-routing.html#url-normalization

4.7. HANDLING TRAILING SLASH IN URLS 31

4.7.4 Redirecting via Apache

Redirecting to no-slash URLs.
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-d
RewriteRule ^(.*)/$ /$1 [L,R=301]

Redirecting to slash URLs.
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*[^/])$ /$1/ [L,R=301]

32 CHAPTER 4. SEO ESSENTIALS

Chapter 5

Forms

5.1 Using and customizing CAPTCHA

Accodring to Wikipedia1 CAPTCHA means “Completely Automated Pub-
lic Turing test to tell Computers and Humans Apart”. In other words,
CAPTCHA provides a problem human can solve easily but computer can’t.
The purpose of it is to prevent automated abuse such as posting comments
containing links to malicious websites or voting for a particular candidate in
an election.

Typical problem that is still quite tricky for computer algorithms is image
recognition. That’s why a common CAPTCHA shows an image with some
text user should read and enter into input field.

5.1.1 How add CAPTCHA to a form

Yii provides a set of ready to use classes to add CAPTCHA to any form.
Let’s review how it could be done.

First of all, we need an action that will display an image containing text.
Typical place for it is SiteController. Since there’s ready to use action, it
could be added via actions() method:

class SiteController extends Controller
{

// ...
public function actions()
{

return [
// ...
’captcha’ => [

’class’ => ’yii\captcha\CaptchaAction’,
’fixedVerifyCode’ => YII_ENV_TEST ? ’testme’ : null,

],
];

1http://en.wikipedia.org/wiki/Captcha

33

http://en.wikipedia.org/wiki/Captcha

34 CHAPTER 5. FORMS

}

// ...
}

In the above we’re reusing yii\captcha\CaptchaAction as site/captcha route.
fixedVerifyCode is set for test environment in order for the test to know
which answer is correct.

Now in the form model (it could be either ActiveRecord or Model) we
need to add a property that will contain user input for verification code and
validation rule for it:

class ContactForm extends Model
{

// ...
public $verifyCode;

// ...
public function rules()
{

return [
// ...
[’verifyCode’, ’captcha’],

];
}

// ...
}

Now we can actually display image and verification input box in a view
containing a form:

<?php $form = ActiveForm::begin([’id’ => ’contact-form’]); ?>
// ...
<?= $form->field($model, ’verifyCode’)->widget(Captcha::className()) ?>
// ...

<?php ActiveForm::end(); ?>

That’s it. Now robots won’t pass. At least dumb ones.
If the image is not being displayed a good way to test if captcha re-

quirements are installed is by accessing the captcha action directly. So
for example if you are using a controller called site try typing in “http:
//blah.com/index.php/site/captcha“ which should display an image. If
not then turn on tracing and check for errors.

5.1.2 Simple math captcha

Nowadays CAPTCHA robots are relatively good at parsing image so while
by using typical CAPTCHA you’re significanly lowering number of spammy
actions, some robots will still be able to parse the image and enter the
verification code correctly.

http://blah.com/index.php/site/captcha
http://blah.com/index.php/site/captcha

5.1. USING AND CUSTOMIZING CAPTCHA 35

In order to prevent it we have to increase the challenge. We could add
extra ripple and special effects to the letters on the image but while it could
make it harder for computer, it certainly will make it significantly harder for
humans which isn’t really what we want.

A good solution for it is to mix a custom task into the challenge. Example
of such task could be a simple math question such as “2 + 1 = ?”. Of course,
the more unique this question is, the more secure is the CAPTCHA.

Let’s try implementing it. Yii CAPTCHA is really easy to extend. The
component itself doesn’t need to be touched since both code generation, code
verification and image generation happens in CaptchaAction which is used in
a controller. In basic project template it’s used in SiteController.

So, first of all, create components/MathCaptchaAction.php:

<?php
namespace app\components;

use yii\captcha\CaptchaAction;

class MathCaptchaAction extends CaptchaAction
{

public $minLength = 0;
public $maxLength = 100;

/**
* @inheritdoc
*/

protected function generateVerifyCode()
{

return mt_rand((int)$this->minLength, (int)$this->maxLength);
}

/**
* @inheritdoc
*/

protected function renderImage($code)
{

return parent::renderImage($this->getText($code));
}

protected function getText($code)
{

$code = (int)$code;
$rand = mt_rand(min(1, $code - 1), max(1, $code - 1));
$operation = mt_rand(0, 1);
if ($operation === 1) {

return $code - $rand . ’+’ . $rand;
} else {

return $code + $rand . ’-’ . $rand;
}

}
}

36 CHAPTER 5. FORMS

In the code above we’ve adjusted code generation to be random number from
0 to 100. During image rendering we’re generating simple math expression
based on the current code.

Now what’s left is to change default captcha action class name to our
class name in controllers/SiteController.php, actions() method:
public function actions()
{

return [
// ...
’captcha’ => [

’class’ => ’app\components\MathCaptchaAction’,
’fixedVerifyCode’ => YII_ENV_TEST ? ’42’ : null,

],
];

}

5.2 Working with ActiveForm via JavaScript

PHP side of ActiveForm, which is usually more than enough for majority of
projects, is described well in the official Yii 2.0 guide2. It is getting a bit
more tricky when it comes to advanced things such as adding or removing
form fields dynamically or triggering individual field validation using unusual
conditions.

In this recipe you’ll be introduced to ActiveForm JavaScript API.

5.2.1 Preparations

We’re going to use basic project template contact form for trying things out
so install it first3.

5.2.2 Triggering validation for individual form fields

$(’#contact-form’).yiiActiveForm(’validateAttribute’, ’contactform-name’);

5.2.3 Trigger validation for the whole form

$(’#contact-form’).yiiActiveForm(’validate’, true);

The second passed argument true forces validation of the whole form.
5.2.4 Using events

$(’#contact-form’).on(’beforeSubmit’, function (e) {
if (!confirm("Everything is correct. Submit?")) {

return false;
}

2http://www.yiiframework.com/doc-2.0/guide-input-forms.html
3http://www.yiiframework.com/doc-2.0/guide-start-installation.html

http://www.yiiframework.com/doc-2.0/guide-input-forms.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

5.2. WORKING WITH ACTIVEFORM VIA JAVASCRIPT 37

return true;
});

Available events are:
• beforeValidate4.
• afterValidate5.
• beforeValidateAttribute6.
• afterValidateAttribute7.
• beforeSubmit8.
• ajaxBeforeSend9.
• ajaxComplete10.

5.2.5 Adding and removing fields dynamically

To add a field to validation list:
$(’#contact-form’).yiiActiveForm(’add’, {

id: ’address’,
name: ’address’,
container: ’.field-address’,
input: ’#address’,
error: ’.help-block’,
validate: function (attribute, value, messages, deferred, $form) {

yii.validation.required(value, messages, {message: "Validation
Message Here"});
}

});

To remove a field so it’s not validated:
$(’#contact-form’).yiiActiveForm(’remove’, ’address’);

5.2.6 Updating error of a single attribute

In order to add error to the attribute:
$(’#contact-form’).yiiActiveForm(’updateAttribute’, ’contactform-subject’, [

"I have an error..."]);

4https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L39

5https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L50

6https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L64

7https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L74

8https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L83

9https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L93

10https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.
activeForm.js#L103

https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L39
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L39
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L50
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L50
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L64
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L64
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L74
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L74
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L83
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L83
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L93
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L93
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L103
https://github.com/yiisoft/yii2/blob/master/framework/assets/yii.activeForm.js#L103

38 CHAPTER 5. FORMS

In order to remove it:
$(’#contact-form’).yiiActiveForm(’updateAttribute’, ’contactform-subject’,

’’);

5.2.7 Update error messages and, optionally, summary

$(’#contact-form’).yiiActiveForm(’updateMessages’, {
’contactform-subject’: [’Really?’],
’contactform-email’: [’I don\’t like it!’]

}, true);

The last argument in the above code indicates if we need to update summary.
5.2.8 Listening for attribute changes

To attach events to attribute changes like Select, Radio Buttons, etc.. you
can use the following code
$("#attribute-id").on(’change.yii’,function(){

//your code here
});

5.2.9 Getting Attribute Value

In order to be compatible with third party widgets like (Kartik), the best
option to retrieve the actual value of an attribute is:
$(’#form_id’).yiiActiveForm(’find’, ’#attribute’).value

5.2.10 Custom Validation

In case you want to change the validation of an attribute in JS based on a
new condition, you can do it with the rule property whenClient, but in the
case you need a validation that doesn’t depends on rules (only client side),
you can try this:
$(’#form_id’).on(’beforeValidate’, function (e) {

$(’#form_id’).yiiActiveForm(’find’, ’#attribute’).validate =
function (attribute, value, messages, deferred, $form) {

//Custom Validation
}

return true;
});

5.3 Uploading files

Uploading files is explained in the guide11 but it won’t hurt to elaborate it
a bit more because often, when Active Record model is reused as a form it
causes confusion when a field storing file path is reused for file upload.

11http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html

http://www.yiiframework.com/doc-2.0/guide-input-file-upload.html

5.3. UPLOADING FILES 39

5.3.1 Objective

We’ll have a posts manager with a form. In the form we’ll be able to upload
an image, enter title and text. Image is not mandatory. Existing image path
should not be set to null when saving without image uploaded.

5.3.2 Preparations

We’ll need a database table with the following structure:
CREATE TABLE post
(

id INT(11) PRIMARY KEY NOT NULL AUTO_INCREMENT,
title VARCHAR(255) NOT NULL,
text TEXT NOT NULL,
image VARCHAR(255)

);

Next, let’s generate Post model with Gii and a CRUD in PostController.
Now we’re ready to start.

5.3.3 Post model adjustments

Post model’s image stores a path to the image uploaded it should not be
confused with the actual file uploaded so we’ll need a separate field for that
purpose. Since the file isn’t saved to database we don’t need to store it.
Let’s just add a public field called upload:
class Post extends \yii\db\ActiveRecord
{

public $upload;

Now we need to adjust validation rules:
/**
* @inheritdoc
*/

public function rules()
{

return [
[[’title’, ’text’], ’required’],
[[’text’], ’string’],
[[’title’], ’string’, ’max’ => 255],
[[’upload’], ’file’, ’extensions’ => ’png, jpg’],

];
}

In the above we removed everything concerning image because it’s not user
input and added file validation for upload.

5.3.4 A form

A form in the views/post/_form.php needs two things. First, we should remove
a field for image. Second, we should add a file upload field for upload:

40 CHAPTER 5. FORMS

<?php $form = ActiveForm::begin([’options’ => [’enctype’ => ’multipart/form-
data’]]); ?>

<?= $form->field($model, ’title’)->textInput([’maxlength’ => true]) ?>

<?= $form->field($model, ’text’)->textarea([’rows’ => 6]) ?>

<?= $form->field($model, ’upload’)->fileInput() ?>

<div class="form-group">
<?= Html::submitButton($model->isNewRecord ? ’Create’ : ’Update’, [’

class’ => $model->isNewRecord ? ’btn btn-success’ : ’btn btn-primary’])
?>

</div>

<?php ActiveForm::end(); ?>

5.3.5 Processing upload

The handling, for simplicity sake, is done in PostController. Two actions:
actionCreate and actionUpdate. Both are repetitive so the first step is to
extract handling into separate method:

public function actionCreate()
{

$model = new Post();
$this->handlePostSave($model);

return $this->render(’create’, [
’model’ => $model,

]);
}

public function actionUpdate($id)
{

$model = $this->findModel($id);

$this->handlePostSave($model);

return $this->render(’update’, [
’model’ => $model,

]);
}

Now let’s implement handlePostSave():

protected function handlePostSave(Post $model)
{

if ($model->load(Yii::$app->request->post())) {
$model->upload = UploadedFile::getInstance($model, ’upload’);

if ($model->validate()) {
if ($model->upload) {

5.4. CUSTOM VALIDATOR FOR MULTIPLE ATTRIBUTES 41

$filePath = ’uploads/’ . $model->upload->baseName . ’.’ .
$model->upload->extension;

if ($model->upload->saveAs($filePath)) {
$model->image = $filePath;

}
}

if ($model->save(false)) {
return $this->redirect([’view’, ’id’ => $model->id]);

}
}

}
}

In the code above right after filling model from POST we’re also filling its
upload field with an instance of the file uploaded. The important thing is
that it should be done before validation. After validating a form, if there’s
file uploaded we’re saving it and writing path into model’s image field. Last,
regular save() is called with a false argument which means “don’t validate”.
It’s done this way because we’ve just validated above and sure it’s OK.

That’s it. Objective achieved.

5.3.6 A note on forms and Active Record

For the sake of simplicity and laziness, Active Record is often reused for
forms directly. There are scenarious making it doable and usually it doesn’t
cause any problems. However, there are situations when what’s in the form
actually differs from what is saved into database. In this case it is preferrable
to create a separate form model which is not Active Record. Data saving
should be done in this model instead of controller directly.

5.4 Custom validator for multiple attributes

Which creating custom validator is well covered in the official guide12, there
are cases when you need to validate multiple attributes at once. For ex-
ample, it can be hard to choose which one is more relevant or you consider
it misleading in rules. In this recipe we’ll implement CustomValidator which
supports for validating multiple attributes at once.

5.4.1 How to do it

By default if multiple attributes are used for validation, the loop will be used
to apply the same validation to each of them. Let’s use a separate trait and
override yii\base\Validator:validateAttributes():

12https://github.com/yiisoft/yii2/blob/master/docs/guide/input-validation.
md#creating-validator-

https://github.com/yiisoft/yii2/blob/master/docs/guide/input-validation.md#creating-validator-
https://github.com/yiisoft/yii2/blob/master/docs/guide/input-validation.md#creating-validator-

42 CHAPTER 5. FORMS

<?php

namespace app\components;

trait BatchValidationTrait
{

/**
* @var bool whether to validate multiple attributes at once
*/

public $batch = false;

/**
* Validates the specified object.
* @param \yii\base\Model $model the data model being validated.
* @param array|null $attributes the list of attributes to be validated.
* Note that if an attribute is not associated with the validator, or is
is prefixed with ‘!‘ char - it will be
* ignored. If this parameter is null, every attribute listed in [[
attributes]] will be validated.
*/

public function validateAttributes($model, $attributes = null)
{

if (is_array($attributes)) {
$newAttributes = [];
foreach ($attributes as $attribute) {

if (in_array($attribute, $this->attributes) || in_array(’!’
. $attribute, $this->attributes)) {

$newAttributes[] = $attribute;
}

}
$attributes = $newAttributes;

} else {
$attributes = [];
foreach ($this->attributes as $attribute) {

$attributes[] = $attribute[0] === ’!’ ? substr($attribute,
1) : $attribute;

}
}

foreach ($attributes as $attribute) {
$skip = $this->skipOnError && $model->hasErrors($attribute)

|| $this->skipOnEmpty && $this->isEmpty($model->$attribute);
if ($skip) {

// Skip validation if at least one attribute is empty or
already has error

// (according skipOnError and skipOnEmpty options must be
set to true

return;
}

}

if ($this->batch) {
// Validate all attributes at once

5.4. CUSTOM VALIDATOR FOR MULTIPLE ATTRIBUTES 43

if ($this->when === null || call_user_func($this->when, $model,
$attribute)) {

// Pass array with all attributes instead of one attribute
$this->validateAttribute($model, $attributes);

}
} else {

// Validate each attribute separately using the same validation
logic

foreach ($attributes as $attribute) {
if ($this->when === null || call_user_func($this->when,

$model, $attribute)) {
$this->validateAttribute($model, $attribute);

}
}

}
}

}

Then we need to create custom validator and use the created trait:

<?php

namespace app\components;

use yii\validators\Validator;

class CustomValidator extends Validator
{

use BatchValidationTrait;
}

To support inline validation as well we can extend default inline validator
and also use this trait:

<?php

namespace app\components;

use yii\validators\InlineValidator;

class CustomInlineValidator extends InlineValidator
{

use BatchValidationTrait;
}

Couple more changes are needed.
First to use our CustomInlineValidator instead of default InlineValidator

we need to override \yii\validators\Validator::createValidator()
method in CustomValidator:

public static function createValidator($type, $model, $attributes, $params =
[])

{
$params[’attributes’] = $attributes;

44 CHAPTER 5. FORMS

if ($type instanceof \Closure || $model->hasMethod($type)) {
// method-based validator
// The following line is changed to use our CustomInlineValidator
$params[’class’] = __NAMESPACE__ . ’\CustomInlineValidator’;
$params[’method’] = $type;

} else {
if (isset(static::$builtInValidators[$type])) {

$type = static::$builtInValidators[$type];
}
if (is_array($type)) {

$params = array_merge($type, $params);
} else {

$params[’class’] = $type;
}

}

return Yii::createObject($params);
}

And finally to support our custom validator in model we can create the trait
and override \yii\base\Model::createValidators() like this:

<?php

namespace app\components;

use yii\base\InvalidConfigException;

trait CustomValidationTrait
{

/**
* Creates validator objects based on the validation rules specified in
[[rules()]].
* Unlike [[getValidators()]], each time this method is called, a new
list of validators will be returned.
* @return ArrayObject validators
* @throws InvalidConfigException if any validation rule configuration
is invalid
*/

public function createValidators()
{

$validators = new ArrayObject;
foreach ($this->rules() as $rule) {

if ($rule instanceof Validator) {
$validators->append($rule);

} elseif (is_array($rule) && isset($rule[0], $rule[1])) { //
attributes, validator type

// The following line is changed in order to use our
CustomValidator

$validator = CustomValidator::createValidator($rule[1],
$this, (array) $rule[0], array_slice($rule, 2));

$validators->append($validator);
} else {

throw new InvalidConfigException(’Invalid validation rule: a

5.4. CUSTOM VALIDATOR FOR MULTIPLE ATTRIBUTES 45

rule must specify both attribute names and validator type.’);
}

}
return $validators;

}
}

Now we can implement custom validator by extending from CustomValidator:
<?php

namespace app\validators;

use app\components\CustomValidator;

class ChildrenFundsValidator extends CustomValidator
{

public function validateAttribute($model, $attribute)
{

// $attribute here is not a single attribute, it’s an array
containing all related attributes

$totalSalary = $this->personalSalary + $this->spouseSalary;
// Double the minimal adult funds if spouse salary is specified
$minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 :

self::MIN_ADULT_FUNDS;
$childFunds = $totalSalary - $minAdultFunds;
if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {

$this->addError(’*’, ’Your salary is not enough for children.’);
}

}
}

Because $attribute contains the list of all related attributes, we can use loop
in case of adding errors for all attributes is needed:
foreach ($attribute as $singleAttribute) {

$this->addError($attribute, ’Your salary is not enough for children.’);
}

Now it’s possible to specify all related attributes in according validation rule:
[

[’personalSalary’, ’spouseSalary’, ’childrenCount’],
\app\validators\ChildrenFundsValidator::className(),
’batch’ => ‘true‘,
’when’ => function ($model) {

return $model->childrenCount > 0;
}

],

For inline validation the rule will be:
[

[’personalSalary’, ’spouseSalary’, ’childrenCount’],
’validateChildrenFunds’,
’batch’ => ‘true‘,
’when’ => function ($model) {

46 CHAPTER 5. FORMS

return $model->childrenCount > 0;
}

],

And here is according validation method:
public function validateChildrenFunds($attribute, $params)
{

// $attribute here is not a single attribute, it’s an array containing
all related attributes
$totalSalary = $this->personalSalary + $this->spouseSalary;
// Double the minimal adult funds if spouse salary is specified
$minAdultFunds = $this->spouseSalary ? self::MIN_ADULT_FUNDS * 2 : self
::MIN_ADULT_FUNDS;
$childFunds = $totalSalary - $minAdultFunds;
if ($childFunds / $this->childrenCount < self::MIN_CHILD_FUNDS) {

$this->addError(’childrenCount’, ’Your salary is not enough for
children.’);
}

}

5.4.2 Summary

The advantages of this approach:
• It better reflects all attributes that participate in validation (the rules

become more readable);
• It respects the options yii\validators\Validator::skipOnError and
yii\validators\Validator::skipOnEmpty for each used attribute
(not only for that you decided to choose as more relevant).

If you have problems with implementing client validation, you can:
• combine yii\widgets\ActiveForm::enableAjaxValidation and yii
\widgets\ActiveForm::enableAjaxValidation options, so multiple
attributes will be validated with AJAX without page reload;

• implement validation outside of yii\validators\Validator::clientValidateAttribute
because it’s designed to work with single attribute.

Chapter 6

Security

6.1 SQL injection

A SQL injection exploit can modify a database data. Please, always val-
idate all input on the server. The following examples shows how to build
parameterized queries:

$user = Yii::$app->db->createCommand(’SELECT * FROM user WHERE id = :id’)
->bindValue(’:id’, 123, PDO::PARAM_INT)
->queryOne();

$params = [’:id’ => 123];

$user = Yii::$app->db->createCommand(’SELECT * FROM user WHERE id = :id’)
->bindValues($params)
->queryOne();

$user = Yii::$app->db->createCommand(’SELECT * FROM user WHERE id = :id’,
$params)

->queryOne();

$command = Yii::$app->db->createCommand(’SELECT * FROM user WHERE id = :id’)
;

$user = $command->bindValue(’:id’, 123)->queryOne();

// Wrong: don’t do this!
$user = Yii::$app->db->createCommand(’SELECT * FROM user WHERE id = ’ .

$_GET[’id’])->queryOne();

47

48 CHAPTER 6. SECURITY

6.2 XSS

Cross-site scripting (XSS) is a web application vulnerability caused by insuf-
ficient output escaping. It allows attacker to inject JavaScript code into your
site pages. For example, if your website has comments, an attacker may add
the following text as a comment:
<script>alert(’Hello from hacker ;)’);</script>

If there’s no filtering and comment is published as is, every user who visits
the page will get “Hello from hacker” alert box which means JavaScript is
executed. And with JavaScript attacker can do virtually anything valid user
can.

That’s how it typically looks in Yii. In controller we’re getting data and
passing it to view:
public function actionIndex()
{

$data = ’<script>alert("injection example")</script>’;
return $this->render(’index’, [
’data’ => $data,

]);
}

And in index.php view we output data without any escaping:
echo $data;

That’s it. We’re vulnerable. Visit your website main page you will see
“injection example” alert.

Next you’ll learn how to prevent it.

6.2.1 Basic output escaping

If you’re sure you’ll have just text in your data, you can escape it in the view
with Html::encode() while outputting it:

‘php echo Html::encode($data); ‘

6.2.2 Dealing with HTML output

In case you need to output HTML entered by user it’s getting a bit more com-
plicated. Yii has a built in HtmlPurifier helper1 which cleans up everything
dangerous from HTML. In a view you may use it as the following:
echo HtmlPurifier::process($data);

Note: HtmlPurifier isn’t fast so consider caching what’s pro-
duced by HtmlPurifier not to call it too often.

1http://www.yiiframework.com/doc-2.0/yii-helpers-basehtmlpurifier.html

http://www.yiiframework.com/doc-2.0/yii-helpers-basehtmlpurifier.html

6.3. RBAC 49

6.2.3 See also

• OWASP article about XSS2.
• HtmlPurifier helper class3.
• HtmlPurifier website4.

6.3 RBAC

RBAC which stands for Role Based Access Control is an access management
system built into Yii. Despite being described well in official guide5 there’s
no complete example on how to use it. Let’s fill the gap.

As an example we’ll take article publishing system such as YiiFeed6.

6.3.1 Configuring RBAC component

Initial configuration of authentication manager component follows the same
pattern as any other component configuration7: in the application config
under components section we’re adding section called authManager specifying a
class and options for the object created. There are two backends available
for authentication manager: PHP files and database. Both are using the
same API so there’s no difference besides how RBAC data is stored.

PHP backend

In order to configure PHP backend add the following to your config file:

return [
// ...
’components’ => [

// ...
’authManager’ => [

’class’ => ’yii\rbac\PhpManager’,
],

],
// ...

];

2https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
3http://www.yiiframework.com/doc-2.0/yii-helpers-basehtmlpurifier.html
4http://htmlpurifier.org
5http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#

rbac
6http://yiifeed.com/
7http://www.yiiframework.com/doc-2.0/guide-structure-application-components.

html

https://www.owasp.org/index.php/Cross-site_Scripting_%28XSS%29
http://www.yiiframework.com/doc-2.0/yii-helpers-basehtmlpurifier.html
http://htmlpurifier.org
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#rbac
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#rbac
http://yiifeed.com/
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html
http://www.yiiframework.com/doc-2.0/guide-structure-application-components.html

50 CHAPTER 6. SECURITY

Note: If you are using yii2-basic-app template, there is a config

/console.php configuration file where the authManager needs to be
declared additionally to config/web.php. In case of yii2-advanced-
app the authManager should be declared only once in common/config

/main.php.

By default PHP file backend stores RBAC data under @app/rbac directory.
That means rbac directory should be created directly in your application
directory and web server process should have permissions to write files into
this directory.

Database backend

Setting up database backend is a bit more complex. First of all, add the
following to your config file:
return [

// ...
’components’ => [

’authManager’ => [
’class’ => ’yii\rbac\DbManager’,

],
// ...

],
];

Note: If you are using yii2-basic-app template, there is a config

/console.php configuration file where the authManager needs to be
declared additionally to config/web.php. In case of yii2-advanced-
app the authManager should be declared only once in common/config

/main.php.

Make sure you have database configured for both web and console applica-
tions then open console and run migration that would create all the tables
necessary to store RBAC data:
yii migrate --migrationPath=@yii/rbac/migrations

6.3.2 Planning roles and permissions hierarchy

As an example we’ve chosen a publishing application. There are three types
of users:

• Regular users who are reading and suggesting articles. They can edit
their own articles as well.

• Moderators who are editing, approving, deleting or denying articles.
They have access to moderation queue.

6.3. RBAC 51

• Administrators who can do everything moderator can plus view list of
users and edit their profiles.

At this point it’s good to get pen and paper or software like yEd8 and draw
the hierarchy.

The first rule of successfully using RBAC is to use as simple hierarchy
as possible. In our case what regular user can do isn’t really needed to be
associated with any role since we can make it work by default. Editing,
approving, deleting or denying articles could be expressed as “managing art-
icles”. Viewing list of users and editing their profiles could be expressed as
“managing users”. This simplification leads us to the following hierarchy:

6.3.3 Filling hierarchy

If your project uses database and you’re already familiar with migrations9

it’s better to build our hierarchy in migration.
Open your console and type

./yii migrate/create rbac_init

8https://www.yworks.com/products/yed
9http://www.yiiframework.com/doc-2.0/guide-db-migrations.html

https://www.yworks.com/products/yed
http://www.yiiframework.com/doc-2.0/guide-db-migrations.html

52 CHAPTER 6. SECURITY

That would create new migration class with up() method in which we’d build
the hierarchy and down() in which we’ll destroy it.
use yii\db\Migration;

class m141204_121823_rbac_init extends Migration
{

public function up()
{

$auth = Yii::$app->authManager;

$manageArticles = $auth->createPermission(’manageArticles’);
$manageArticles->description = ’Manage articles’;
$auth->add($manageArticles);

$manageUsers = $auth->createPermission(’manageUsers’);
$manageUsers->description = ’Manage users’;
$auth->add($manageUsers);

$moderator = $auth->createRole(’moderator’);
$moderator->description = ’Moderator’;
$auth->add($moderator);
$auth->addChild($moderator, $manageArticles);

$admin = $auth->createRole(’admin’);
$admin->description = ’Administrator’;
$auth->add($admin);
$auth->addChild($admin, $moderator);
$auth->addChild($admin, $manageUsers);

}

public function down()
{

Yii::$app->authManager->removeAll();
}

}

In the above createPermission() and createRole() are creating new hierarchy
objects but not yet saving them. In order to save them add() should be
called. addChild() method is used to connect child object to their parents.
When called this method saves connections immediately.

Note: It doesn’t matter which backend you’re using: PHP files
or database. Authentication manager exposes exactly the same
methods so hierarchy is built using exactly the same code.

In case your application isn’t using database at all or you don’t want to use
migrations, you can do the same in a console command. For basic project
template that would be commands\RbacController.php:
<?php
namespace app\commands;

6.3. RBAC 53

use yii\console\Controller;

class RbacController extends Controller
{

public function actionInit()
{

if (!$this->confirm("Are you sure? It will re-create permissions
tree.")) {

return self::EXIT_CODE_NORMAL;
}

$auth = Yii::$app->authManager;
$auth->removeAll();

$manageArticles = $auth->createPermission(’manageArticles’);
$manageArticles->description = ’Manage articles’;
$auth->add($manageArticles);

$manageUsers = $auth->createPermission(’manageUsers’);
$manageUsers->description = ’Manage users’;
$auth->add($manageUsers);

$moderator = $auth->createRole(’moderator’);
$moderator->description = ’Moderator’;
$auth->add($moderator);
$auth->addChild($moderator, $manageArticles);

$admin = $auth->createRole(’admin’);
$admin->description = ’Administrator’;
$auth->add($admin);
$auth->addChild($admin, $moderator);
$auth->addChild($admin, $manageUsers);

}
}

The command above could be called as ./yii rbac/init.

6.3.4 Assigning role to user

Since our default user doesn’t have any role we don’t need to worry about
assigning it. User role management could be implemented either in admin
panel or in console. Since our admins are cool guys, we’ll create console
contoller commands\RbacController.php:

<?php
namespace app\commands;

use yii\console\Controller;

class RbacController extends Controller
{

54 CHAPTER 6. SECURITY

public function actionAssign($role, $username)
{

$user = User::find()->where([’username’ => $username])->one();
if (!$user) {

throw new InvalidParamException("There is no user \"$username\".
");

}

$auth = Yii::$app->authManager;
$roleObject = $auth->getRole($role);
if (!$roleObject) {

throw new InvalidParamException("There is no role \"$role\".");
}

$auth->assign($roleObject, $user->id);
}

}

In the code above we’re finding a user by username specified. Then getting
role object by its name and assigning role to a user by ID. Again, it doesn’t
matter if PHP backend or database backend is used. It would look exactly
the same.

Also it would be exactly the same assignment in case of implementing
admin UI or in case when you need role right away and assigning it right
after user is successfully singed up.

Sign up three new users and assign two of them admin and moderator roles
respectively:
./yii rbac/assign admin qiang
./yii rbac/assign moderator alex

6.3.5 Checking access

Now we have RBAC in place and three users: regular user, moderator and
admin. Let’s start using what we’ve created.

Access filter

The very basic access checks could be done via access control filter which is
covered well in the official guide10:
namespace app\controllers;

use yii\web\Controller;
use yii\filters\AccessControl;

class ArticleController extends Controller

10http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#
access-control-filter

http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#access-control-filter
http://www.yiiframework.com/doc-2.0/guide-security-authorization.html#access-control-filter

6.3. RBAC 55

{
public function behaviors()
{

return [
’access’ => [

’class’ => AccessControl::className(),
’only’ => [’suggest’, ’queue’, ’delete’, ’update’], //only

be applied to
’rules’ => [

[
’allow’ => true,
’actions’ => [’suggest’, ’update’],
’roles’ => [’@’],

],
[

’allow’ => true,
’actions’ => [’queue’, ’delete’],
’roles’ => [’manageArticles’],

],
],

],
’verbs’ => [

’class’ => VerbFilter::className(),
’actions’ => [

’delete’ => [’post’],
],

],
];

}

// ...

We’re allowing any authenticated user to suggest articles. Same applied
to editing articles (it’s explained in the next section). Viewing moder-
ation queue and deleting articles are available only to roles which have
manageArticles permission. In our case it’s both admin and moderator since
admin inherits all moderator permissions.

Same simple checks via access control filter could be applied to UserController

which handles admin actions regarding users.

Doing manual checks

In some cases it’s necessary to do manual checks. In our case it’s checking
if users is allowed to edit an article. We can’t do it via access control filter
because we need to allow editing for regular users owning an article and
moderators at the same time:
namespace app\controllers;

use app\models\Article;
use yii\web\Controller;

56 CHAPTER 6. SECURITY

use yii\filters\AccessControl;

class ArticleController extends Controller
{

// ...
public function actionUpdate($id)
{

$model = $this->findModel($id);
if (Yii::$app->user->id == $model->user_id || \Yii::$app->user->can(

’manageArticles’)) {
// ...

} else {
throw new ForbiddenHttpException(’You are not allowed to edit

this article.’);
}

}
}

In the code above we’re checking if current user is either article owner or is
allowed to manage articles. If either one is true, we’re proceeding normally.
Otherwise denying access.

6.4 CSRF

Cross-site request Forgery (CSRF) is one of a typical web application vul-
nerabilities. It’s based on the assumption that user may be authenticated at
some legitimate website. Then he’s visiting attacker’s website which issues
requests to legitimate website using JavaScript code, a form, <img src=" tag
or any other means. This way attacker could, for example, reset victim’s
password or transfer funds from his bank account (in case bank website isn’t
secure, of course).

One of the ways11 to prevent this type of attacks is to use a special token
to validate request origin. Yii does it by default. You can try it by adding
a simple form to you view and submitting it:
<form method="POST">

<input type="submit" value="ok!">
</form>

You’ll get the following error:
Bad Request (#400)
Unable to verify your data submission.

This is because for every request Yii generates a special unique token that
you have to send with your request data. So when you make a request Yii
compares generated and received tokens. If they match Yii continues to

11https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_
Prevention_Cheat_Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

6.4. CSRF 57

handle request. If they don’t match or in case CSRF token is missing in
request data, an error is raised.

The token generated isn’t known to attacker website so it can’t make
requests on your behalf.

An important thing to note is about request methods such as GET. Let’s
add the following form and submit it:

<form method="GET">
<input type="submit" value="ok!">

</form>

No error has occurred. This is because CSRF protection works only for
unsafe request methods such PUT, POST or DELETE. That’s why in order to stay
safe your application should never ever use GET requests to change application
state.

6.4.1 Disabling CSRF protection

In some cases you may need to disable CSRF validation. In order to do it
set $enableCsrfValidation Controller property to false:

class MyController extends Controller
{

public $enableCsrfValidation = false;

In order to do the same for a certain action use the following code:

class MyController extends Controller
{

public function beforeAction($action)
{

if (in_array($action->id, [’incoming’])) {
$this->enableCsrfValidation = false;

}
return parent::beforeAction($action);

}

See handling incoming third party POST requests for details.

6.4.2 Adding CSRF protection

CSRF protection is enabled by default so what you need is to submit a token
along with all your requests. Usually it’s done via hidden field:

<form method="POST">
<input id="form-token" type="hidden" name="<?=Yii::$app->request->
csrfParam?>"

value="<?=Yii::$app->request->csrfToken?>"/>
<input type="submit" value="ok!">

</form>

58 CHAPTER 6. SECURITY

In case ActiveForm is used, token is added automatically.

6.4.3 See also

• OWASP article about CSRF12

• Handling incoming third party POST requests.

12https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_
Prevention_Cheat_Sheet

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet

Chapter 7

Structuring and organizing
code

7.1 Structure: backend and frontend via modules

https://github.com/yiisoft/yii2/issues/3647
By default Yii comes with advanced application template that allows you

to properly structure backend and frontend. It’s a good way to deal with
the problem except when you want to redistribute parts of your application.
In this case a better way is to use modules.

7.1.1 Directory structure

common
components
models

backend
controllers
views
Module

frontend
controllers
views
Module

7.1.2 Namespaces

Root namespace is the same as in any extension i.e. samdark\blog (PSR-
4 record required in composer.json). Common stuff is under samdark\blog\

common. Backend module is samdark\blog\backend\Module, frontend module is
samdark\blog\frontend\Module.

7.1.3 Using it

• Install via Composer.

59

https://github.com/yiisoft/yii2/issues/3647

60 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

• In your application config use modules:

’modules’ => [
’blogFrontend’ => [

’class’ => ’samdark\blog\frontend\Module’,
’anonymousComments’ => false,

],
’blogBackend’ => [

’class’ => ’samdark\blog\backend\Module’,
],

]

• Access via browser:

http://example.com/blog-frontend/post/view?id=10
http://example.com/blog-backend/user/index

7.2 Asset processing with Grunt

Yii 2.0 has pretty good asset management out of the box1. It can handle
publishing, mapping, format conversion, combining and compression. So far
so good but if you’re working with frontend team of your asset processing
goes slightly beyond what Yii is capable of, it’s a good idea to delegate the
job to Grunt2 which has lots of extensions capable of what Yii can do plus
anything you can imagine about clientside development.

7.2.1 Get ready

We’ll start with basic application template. Its installation is described in
official guide3.

If you haven’t installed Node.js4, do so. After it’s done install TypeScript,
Grunt and its required plugins by executing the following commands in pro-
ject root directory:

npm install -g grunt-cli

npm install grunt --save-dev
npm install grunt-contrib-copy --save-dev
npm install grunt-contrib-less --save-dev
npm install grunt-contrib-uglify --save-dev
npm install grunt-contrib-watch --save-dev
npm install grunt-concat-sourcemap --save-dev
npm install typescript --save-dev
npm install grunt-typescript --save-dev

1http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
2http://gruntjs.com/
3http://www.yiiframework.com/doc-2.0/guide-start-installation.html
4http://nodejs.org/

http://www.yiiframework.com/doc-2.0/guide-structure-assets.html
http://gruntjs.com/
http://www.yiiframework.com/doc-2.0/guide-start-installation.html
http://nodejs.org/

7.2. ASSET PROCESSING WITH GRUNT 61

7.2.2 How to do it...

First of all, turn off built in Yii asset management via editing config/web.php:

$params = require(__DIR__ . ’/params.php’);

$config = [
// ...
’components’ => [

// ...
’assetManager’ => [

’bundles’ => false,
],

],
];

// ...

return $config;

Edit layout file views/layouts/main.php. After <?= Html::csrfMetaTags() ?> add:

<?= Html::cssFile(YII_DEBUG ? ’@web/css/all.css’ : ’@web/css/all.min.css?v=’
. filemtime(Yii::getAlias(’@webroot/css/all.min.css’))) ?>

It adds a link to http://example.com/css/all.css in debug mode and a link to
http://example.com/css/all.min.css with modification time (cache busting) in
production mode. The file itself will be published by Grunt.

Right before <?php $this->endBody() ?> add:

<?= Html::jsFile(YII_DEBUG ? ’@web/js/lib.js’ : ’@web/js/lib.min.js?v=’ .
filemtime(Yii::getAlias(’@webroot/js/lib.min.js’))) ?>

<?= Html::jsFile(YII_DEBUG ? ’@web/js/all.js’ : ’@web/js/all.min.js?v=’ .
filemtime(Yii::getAlias(’@webroot/js/all.min.js’))) ?>

Same as with CSS, it adds a link for JS that is published via Grunt.
Now create Gruntfile.js in the root of the project. The file describes

what grunt will do with your assets:

module.exports = function (grunt) {
grunt.initConfig({

less: {
dev: {

options: {
compress: false,
sourceMap: true,
outputSourceFiles: true

},
files: {

"web/css/all.css": "assets/less/all.less"
}

},
prod: {

options: {
compress: true

62 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

},
files: {

"web/css/all.min.css": "assets/less/all.less"
}

}
},
typescript: {

base: {
src: [’assets/ts/*.ts’],
dest: ’web/js/all.js’,
options: {

module: ’amd’,
sourceMap: true,
target: ’es5’

}
}

},
concat_sourcemap: {

options: {
sourcesContent: true

},
all: {

files: {
’web/js/all.js’: grunt.file.readJSON(’assets/js/all.json

’)
}

}
},
copy: {

main: {
files: [

{expand: true, flatten: true, src: [’vendor/bower/
bootstrap/fonts/*’], dest: ’web/fonts/’, filter: ’isFile’}

]
}

},
uglify: {

options: {
mangle: false

},
lib: {

files: {
’web/js/lib.min.js’: ’web/js/lib.js’

}
},
all: {

files: {
’web/js/all.min.js’: ’web/js/all.js’

}
}

},
watch: {

typescript: {
files: [’assets/ts/*.ts’],

7.2. ASSET PROCESSING WITH GRUNT 63

tasks: [’typescript’, ’uglify:all’],
options: {

livereload: true
}

},
js: {

files: [’assets/js/**/*.js’, ’assets/js/all.json’],
tasks: [’concat_sourcemap’, ’uglify:lib’],
options: {

livereload: true
}

},
less: {

files: [’assets/less/**/*.less’],
tasks: [’less’],
options: {

livereload: true
}

},
fonts: {

files: [
’vendor/bower/bootstrap/fonts/*’

],
tasks: [’copy’],
options: {

livereload: true
}

}
}

});

// Plugin loading
grunt.loadNpmTasks(’grunt-typescript’);
grunt.loadNpmTasks(’grunt-concat-sourcemap’);
grunt.loadNpmTasks(’grunt-contrib-watch’);
grunt.loadNpmTasks(’grunt-contrib-less’);
grunt.loadNpmTasks(’grunt-contrib-uglify’);
grunt.loadNpmTasks(’grunt-contrib-copy’);

// Task definition
grunt.registerTask(’build’, [’less’, ’typescript’, ’copy’, ’
concat_sourcemap’, ’uglify’]);
grunt.registerTask(’default’, [’watch’]);

};

Now Grunt will look in assets/js, assets/less and assets/ts for clientside
source files.

Create assets/js/all.json:

[
"vendor/bower/jquery/dist/jquery.js",
"vendor/bower/bootstrap/dist/js/bootstrap.js",
"vendor/yiisoft/yii2/assets/yii.js",
"vendor/yiisoft/yii2/assets/yii.validation.js",

64 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

"vendor/yiisoft/yii2/assets/yii.activeForm.js"
]

all.json lists JavaScript files to process into lib.js. In the above we’re
doing the same things standard Yii asset management does: adding jQuery,
bootstrap and Yii’s JavaScript.

Now create assets/less/all.less:

@import "../../vendor/bower/bootstrap/less/bootstrap.less";
@import "site.less";

and assets/less/site.less. Its content should be copied from web/css/site.

css.

7.2.3 How to use it

• Run grunt build to process assets.
• During development you could run grunt and the process will watch for

changes and rebuild files necessary.
• In order to add JavaScript files, put these into assets/js and list their

names in assets/js/all.json.
• In order to add LESS files5, put these into assets/less and list their

names in assets/less/all.less.
• In order to add TypeScript files6 just put these into assets/ts.

7.3 Using global functions

Although it looks like a weird idea at the first glance, using just functions
in PHP is actually nice. Code looks much shorter and, with a good naming
choices, much simpler.

7.3.1 How to do it

First of all, create a file that will contain functions. Let it be functions.php

right in the root of the application. In order to be used it should in required.
The best place to do it is index.php:

// ...
require(__DIR__ . ’/../vendor/autoload.php’);
require(__DIR__ . ’/../vendor/yiisoft/yii2/Yii.php’);

$config = require(__DIR__ . ’/../config/web.php’);

$app = new yii\web\Application($config);
require(__DIR__ . ’/../functions.php’);
$app->run();

5http://lesscss.org/
6http://www.typescriptlang.org/

http://lesscss.org/
http://www.typescriptlang.org/

7.4. PROCESSING TEXT 65

Note that we’re requiring it after including config and creating application
instance. That allows you to use config and application which is needed for
many functions.

Also you can do it in composer.json:
"autoload": {

"files": [
"functions.php"

]
},

Note that after add this section you need run composer update.

7.3.2 Function ideas

Below are some function ideas. You can add more if needed:
use yii\helpers\Url;
use yii\helpers\Html;
use yii\helpers\HtmlPurifier;
use yii\helpers\ArrayHelper;

function url($url = ’’, $scheme = false)
{

return Url::to($url, $scheme);
}

function h($text)
{

return Html::encode($text);
}

function ph($text)
{

return HtmlPurifier::process($text);
}

function t($message, $params = [], $category = ’app’, $language = null)
{

return Yii::t($category, $message, $params, $language);
}

function param($name, $default = null)
{

return ArrayHelper::getValue(Yii::$app->params, $name, $default);
}

7.4 Processing text

When implementing post or article publishing, it’s very important to choose
right tool for the job. Common approach is to use WYSIWYG (what you
see is what you get) editor that produces HTML but that has significant

66 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

cons. The most prominent con is that it’s easy to break website design and
to produce excessive and ugly HTML. The pro is that it’s quite natural for
people worked with MS Word or alike text processors.

Luckily, we have simple markups such as markdown nowadays. While
being very simple, it has everything to do basic text formatting: emphasis,
hyperlinks, headers, tables, code blocks etc. For tricky cases it still accepts
HTML.

7.4.1 Converting markdown to HTML

How to do it

Markdown helper is very easy to use:

$myHtml = Markdown::process($myText); // use original markdown flavor
$myHtml = Markdown::process($myText, ’gfm’); // use github flavored markdown
$myHtml = Markdown::process($myText, ’extra’); // use markdown extra

How to secure output

Since markdown allows pure HTML as well, it’s not secure to use it as is.
Thus we’ll need to post-process output via HTMLPurifier:

$safeHtml = HtmlPurifier::process($unsafeHtml);

Where to do it

• The library used to convert markdown to HTML is fast so processing
right in the view could be OK.

• Result could be saved into separate field in database or cached for extra
performance. Both could be done in afterSave method of the model.
Note that in case of database field we can’t save processed HTML to
the same field because of the need to edit original.

7.4.2 Alternatives

Markdown is not the only simple markup available. A good overview exists
in Wikipedia7.

7.5 Implementing typed collections

For stricter type hinting and iterfaces it could be useful to implement typed
collections to put your models and other same-typed classes into.

As an example, we’ll assume we have a Post class:
7https://en.wikipedia.org/wiki/Lightweight_markup_language

https://en.wikipedia.org/wiki/Lightweight_markup_language

7.5. IMPLEMENTING TYPED COLLECTIONS 67

class Post
{

private $title;

public function __construct($title)
{

$this->title = $title;
}

public function getTitle()
{

return $this->title;
}

}

A simple typed immutable collection could be implemented like the following:

class PostCollection implements \Countable, \IteratorAggregate
{

private $data;

public function __construct(array $data)
{

foreach ($data as $item) {
if (!$item instanceof Post) {

throw new \InvalidArgumentException(’All items should be of
Post class.’);

}
}
$this->data = $data;

}

public function count()
{

return count($this->data);
}

public function getIterator()
{

return new \ArrayIterator($this->data);
}

}

That’s it. Now you can use it like the following:

$data = [new Post(’post1’), new Post(’post 2’)];
$collection = new PostCollection($data);

foreach ($collection as $post) {
echo $post->getTitle();

}

The main pro besides type checking in the constructor is about interfaces.
With typed collections you may explicitly require a set of items of a certain
class:

68 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

interface FeedGenerator
{

public function generateFromPosts(PostsCollection $posts);
}

// instead of

interface FeedGenerator
{

public function generateFromPosts(array $posts);
}

7.6 MVC

If you’ve been working in web development you’ve most probably heard of
the term “MVC” and know that it refers to “Model”, “View”, and “Controller”.
The “MVC” software pattern was introduced in the nineties to explain the
principles of building desktop applications. In particular to describe how a
user interface interacts with a program and its underlying data. Later it was
adjusted and adapted by web developers and has become a core foundation
of many popular web frameworks including PHP frameworks. The name of
a new pattern is still “MVC” and is often causing confusion.

A key issue for beginners with MVC is that despite its simplicity, it’s
not always easy to identify what a “Model”, “View”, and “Controller” really
mean. Let’s find out by starting with the simplest one.

7.6.1 Controller

The role of the controller is to accept input and convert it to commands for
the model or view. Essentially the controller works with external data and
environment such as:

• GET, POST and other requests in web
• user input in console

7.6.2 View

The view layer processes and formats data from the controller before sending
it to the user. It generates HTML, JSON, or whatever format is needed.

Note: It is strictly forbidden to work with any environment,
database or user input directly in the view. It should be in con-
troller.

7.6.3 Model

The model is the most interesting part of the MVC pattern and the most
misunderstood one. A MVC model is often confused with the Yii Model class

7.7. SOLID 69

and even Active Record. These are not the same thing. The MVC model is
not a single class, it’s the whole domain layer (also called the problem layer
or application logic). Given data from the controller it’s doing actual work
of the application and passing results back to controller.

Note: Its possible the model can be totally disconnected from
the database structure.

ActiveRecord classes should not contain any significant business logic. It
deserves to be in separate classes which are built according to SOLID and
Dependency Inversion. Don’t be afraid to create your own classes which are
not inherited from anything from the framework.

Note: The Model should never deal with formatting i.e. it
should not produce any HTML. This is the job of the view layer.
Also, same as in the view, it is strictly forbidden to work with
any environment, database or user input directly in the view. It
should be in controller.

7.7 SOLID

SOLID is a set of principles that you should follow if you want to get pure
object oriented code which is easy to test and extend.

These stand for:
• Single responsibility
• Open-closed
• Liskov substitution
• Interface segregation
• Dependency inversion

Let’s check what these mean.

7.7.1 Single responsibility

A class should be responsible for a single task.

7.7.2 Open-closed

A class or module (a set of related classes) should hide its implementation
details (i.e. how exactly things are done) but have a well defined interface
that both allows its usage by other classes (public methods) and extension
via inheritance (protected and public methods).

70 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

7.7.3 Liskov substitution

LSP, when defined classically, is the most complicated principle in SOLID.
In fact, it’s not that complicated.

It is about class hierarchies and inheritance. When you implement a
new class extending from base one it should have the same interface and
behave exactly the same in same situations so it’s possible to interchange
these classes.

For more see a good set of answers at StackOverflow8.

7.7.4 Interface segregation

The principle points that an interface should not define more functionality
that is actually used at the same time. It is like single responsibiltiy but
for interfaces. In other words: if an interface does too much, break it into
multiple more focused interfaces.

7.7.5 Dependency inversion

Dependency inversion basically states that a class should tell what it needs
via interfaces but never get what it needs itself.

See dependencies.md for more information.

7.8 Dependencies

Class A depends on class B when B is used within A i.e. when B is required
for A to function.

7.8.1 Bad and good dependencies

There are two metrics of dependencies:
• Cohesion.
• Coupling.

Cohesion means dependency on a class with related functionality.
Coupling means dependency on a class with not really related function-

ality.
It’s preferrable to have high cohesion and low coupling. That means you

should get related functionality together into a group of classes usually called
a module (which is not Yii module and not an actual class, just a logical
boundary). Within that module it’s a good idea not to over-abstract things
and use interconnected classes directly. As for classes which aren’t part of
the module’s purpose but are used by the module, such as general purpose
utilities, these should not be used directly but through interface. Via this

8http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle

http://stackoverflow.com/questions/56860/what-is-the-liskov-substitution-principle

7.8. DEPENDENCIES 71

interface module states what is needed for it to function and from this point
it doesn’t care how these dependencies are satisfied.

7.8.2 Achieving low coupling

You can’t eliminate dependencies altogether but you can make them more
flexible.

7.8.3 Inversion of control

7.8.4 Dependency injection

7.8.5 Dependency container

Injecting basic dependencies is simple and easy. You’re choosing a place
where you don’t care about dependencies, which is usually controller which
you aren’t going to unit-test ever, create instances of dependencies needed
and pass these to dependent classes.

It works well when there aren’t many dependencies overall and when
there are no nested dependencies. When there are many and each depend-
ency has dependencies itself, instantiating the whole hierarchy becomes te-
dious process which requires lots of code and may lead to hard to debug
mistakes.

Additionally, lots of dependencies, such as certain third party API wrap-
per, are the same for any class using it. So it makes sense to:

• Define how to instantiate such API wrapper once.
• Instantiate it when required and only once per request.

That’s what dependency containers are for.
See official guide9 for more information about Yii’s dependency container.

9http://www.yiiframework.com/doc-2.0/guide-concept-di-container.html

http://www.yiiframework.com/doc-2.0/guide-concept-di-container.html

72 CHAPTER 7. STRUCTURING AND ORGANIZING CODE

Chapter 8

View

8.1 Reusing views via partials

One of the main developing principles is DRY - don’t repeat yourself. Du-
plication happens everywhere during development of the project including
views. In order to fix it let’s create reusable views.

8.1.1 Creating partial view

Here’s a part of a standard views/site/index.php code:
<?php
/* @var $this yii\web\View */
$this->title = ’My Yii Application’;
?>
<div class="site-index">
<div class="jumbotron">

<h1>Congratulations!</h1>
<p class="lead">You have successfully created your Yii-powered
application.</p>
<p>
Get started with Yii</p>

</div>
<div class="body-content">
//...

For example, we want to show <div class="jumbotron"> HTML block both
on the front page and inside views/site/about.php view which is for about
page. Let’s create a separate view file views/site/_jumbotron.php and place
the following code inside:
<div class="jumbotron">

<h1>Congratulations!</h1>
<p class="lead">You have successfully created your Yii-powered
application.</p>
<p>
Get started with Yii</p>

</div>

73

74 CHAPTER 8. VIEW

8.1.2 Using partial view

Replace <div class="jumbotron">HTML block inside views/site/index.php with
the following code:
<?php
/* @var $this yii\web\View */
$this->title = ’My Yii Application’;
?>
<div class="site-index">
<?=$this->render(’_jumbotron.php’)?>; // this line replaces standard block
<div class="body-content">
//...

Let’s add the same code line inside views/site/about.php (or inside another
view):
<?php
use yii\helpers\Html;
/* @var $this yii\web\View */
$this->title = ’About’;
$this->params[’breadcrumbs’][] = $this->title;
?>
<div class="site-about">

<?=$this->render(’_jumbotron.php’)?>; // our line

In the code above we’re relying on View::render()1 method which renders a
view specified and returns its output which we’re echoing immediately.

8.1.3 Adding variables

Let’s customize message displayed in jumbotron. By default it will be the
same message but user should be able to pass custom message via message

parameter.
First of all, customize views/site/_jumbotron.php:

<?php
$message = isset($message) ? $message : ’You have successfully created your

Yii-powered application.’;
?>
<div class="jumbotron">

<h1>Congratulations!</h1>
<p class="lead"><?= $message ?></p>
<p>
Get started with Yii</p>

</div>

Now let’s pass custom message for about page:
<?php
use yii\helpers\Html;
/* @var $this yii\web\View */

1http://www.yiiframework.com/doc-2.0/yii-base-view.html#render%28%
29-detail

http://www.yiiframework.com/doc-2.0/yii-base-view.html#render%28%29-detail
http://www.yiiframework.com/doc-2.0/yii-base-view.html#render%28%29-detail

8.2. SWITCHING THEMES DYNAMICALLY 75

$this->title = ’About’;
$this->params[’breadcrumbs’][] = $this->title;
?>
<div class="site-about">

<?=$this->render(’_jumbotron.php’, [
’message’ => ’This is about page!’,

])?>; // our line

8.2 Switching themes dynamically

View themes are useful for overriding extension views and making special
view versions. Official Yii guide2 describes static usage and configuration of
views well so in this recipe we’ll learn how to switch themes dynamically.

8.2.1 Preparations

We’ll start with the basic project template3. Make sure it is installed and
works well.

8.2.2 The goal

For simplicity, let’s switch theme based on a GET parameter i.e. themed=1.

8.2.3 How to do it

Theme could be switched at any moment before view template is rendered.
For clarity sake let’s do it right in index action of controllers/SiteController
.php:

public function actionIndex()
{

if (Yii::$app->request->get(’themed’)) {
Yii::$app->getView()->theme = new Theme([

’basePath’ => ’@app/themes/basic’,
’baseUrl’ => ’@web/themes/basic’,
’pathMap’ => [

’@app/views’ => ’@app/themes/basic’,
],

]);
}
return $this->render(’index’);

}

If there’s a themed GET parameter we’re configuring current a theme which
takes view templates from themes/basic directory. Let’s add customized tem-
plate itself in themes/basic/site/index.php:

2http://www.yiiframework.com/doc-2.0/guide-output-theming.html
3http://www.yiiframework.com/doc-2.0/guide-start-installation.html

http://www.yiiframework.com/doc-2.0/guide-output-theming.html
http://www.yiiframework.com/doc-2.0/guide-start-installation.html

76 CHAPTER 8. VIEW

Hello, I’m a custom theme!

That’s it. Now try accessing homepage with and without themed GET para-
meter.

8.3 Post-processing response

Sometimes there’s a need to post-process repsonse which is to be sent to
browser. A good example is short tags like the ones in Wordpress engine.
You use it like the following:
This is [username]. We have [visitor_count] visitors on website.

And both are automatically replaced by corresponding content.

8.3.1 How to do it

Yii is very flexible so it’s easy to achieve:
Yii::$app->getResponse()->on(Response::EVENT_AFTER_PREPARE, function($event)

{
/** @var User $user */
$user = Yii::$app->getUser()->getIdentity();
$replacements = [

’[username]’ => $user->username,
’[visitor_count]’ => 42,

];

$event->sender->content = str_replace(array_keys($replacements),
array_values($replacements), $event->sender->content);

});

In the code above we’re using Response::EVENT_AFTER_PREPARE which is triggered
right before sending content to a browser. In the callback $event->sender is
our response object which keeps data to be sent in content property. So we
are finding and replacing short tags there.

Chapter 9

Models

77

78 CHAPTER 9. MODELS

Chapter 10

Active Record

10.1 Single table inheritance

There is no native inheritance support in most relational databases so it
should be implemented manually if needed. One of approaches to the prob-
lem is called single table inheritance1, described well by Martin Fowler.

According to the pattern in the entity table we add an additional column
called type that determines which class will be instantiated from a row of
data.

Let’s implement simple car types inheritance with the following class
structure:

Car
|- SportCar
|- HeavyCar

10.1.1 Get ready

We’ll use a basic application. After creating and setting up a database,
execute the following SQL to create the table and insert some data:

CREATE TABLE ‘car‘ (
‘id‘ int NOT NULL AUTO_INCREMENT,
‘name‘ varchar(255) NOT NULL,
‘type‘ varchar(255) DEFAULT NULL,
PRIMARY KEY (‘id‘)

);

INSERT INTO car (id, NAME, TYPE) VALUES (1, ’Kamaz’, ’heavy’), (2, ’Ferrari’
, ’sport’), (3, ’BMW’, ’city’);

Now use Gii to generate Car model.

1http://martinfowler.com/eaaCatalog/singleTableInheritance.html

79

http://martinfowler.com/eaaCatalog/singleTableInheritance.html

80 CHAPTER 10. ACTIVE RECORD

10.1.2 How to do it...

We’ll need a quite simple custom query class in order to always apply car
type to query condition. Create models/CarQuery.php:
namespace app\models;

use yii\db\ActiveQuery;

class CarQuery extends ActiveQuery
{

public $type;
public $tableName;

public function prepare($builder)
{

if ($this->type !== null) {
$this->andWhere(["$this->tableName.type" => $this->type]);

}
return parent::prepare($builder);

}
}

Now let’s create models for car classes for different types. First models/

SportCar.php:
namespace app\models;

class SportCar extends Car
{

const TYPE = ’sport’;

public function init()
{

$this->type = self::TYPE;
parent::init();

}

public static function find()
{

return new CarQuery(get_called_class(), [’type’ => self::TYPE, ’
tableName’ => self::tableName()]);
}

public function beforeSave($insert)
{

$this->type = self::TYPE;
return parent::beforeSave($insert);

}
}

Then models/HeavyCar.php:
namespace app\models;

class HeavyCar extends Car

10.1. SINGLE TABLE INHERITANCE 81

{
const TYPE = ’heavy’;

public function init()
{

$this->type = self::TYPE;
parent::init();

}

public static function find()
{

return new CarQuery(get_called_class(), [’type’ => self::TYPE, ’
tableName’ => self::tableName()]);
}

public function beforeSave($insert)
{

$this->type = self::TYPE;
return parent::beforeSave($insert);

}
}

Now we need to override instantiate method in the Car model:
public static function instantiate($row)
{

switch ($row[’type’]) {
case SportCar::TYPE:

return new SportCar();
case HeavyCar::TYPE:

return new HeavyCar();
default:

return new self;
}

}

Also we need to override tableName method in the Car model in order for all
models involved to use a single table:
public static function tableName()
{

return ’{{%car%}}’;
}

That’s it. Let’s try it. Create the following actionTest in SiteController and
run it:
// finding all cars we have
$cars = Car::find()->all();
foreach ($cars as $car) {

echo "$car->id $car->name " . get_class($car) . "
";
}

// finding any sport car
$sportCar = SportCar::find()->limit(1)->one();
echo "$sportCar->id $sportCar->name " . get_class($sportCar) . "
";

82 CHAPTER 10. ACTIVE RECORD

The output should be:
1 Kamaz app\models\HeavyCar
2 Ferrari app\models\SportCar
3 BMW app\models\Car
2 Ferrari app\models\SportCar

That means models are now instantiated according to type field and the
search is performed as expected.

10.1.3 How it works...

SportCar and HeavyCar models are quite similar. They both extend from Car

and have two methods overridden. In find method we’re instantiating a
custom query class that stores car type and applies it in the prepare method
that is called right before forming SQL for the database query. SportCar

will only search for sport cars and HeavyCar will only search for heavy cars.
In beforeSave we’re making sure that the proper type is written to database
when class is saved. TYPE constants are introduced just for convenience.

The Car model is pretty much what was generated by Gii except addi-
tional instantiate method. This method is called after data is retrieved from
database and is about to be used to initialize class properties. Return value
is uninitialized class instance and the only argument passed to the method
is the row of data retrieved from the database. Exactly what we need. The
implementation is a simple switch statement where we’re checking if the type

field matches type of the classes we suport. If so, an instance of the class is
returned. If nothing matches, it falls back to returning a Car model instance.

10.1.4 Handling unique values

If you have a column marked as unique, to prevent breaking the UniqueValidator

you need to specify the targetClass‘ property.
public function rules()
{

return [
[[’MyUniqueColumnName’], ’unique’, ’targetClass’ => ’\app\models

\Car’],
];

}

Chapter 11

i18n

11.1 Selecting application language

When developing applications or websites for global marked, supporting mul-
tiple languages is always a requirement. Yii has built in solution for handling
message translations but doesn’t provide anything about selecting a language
because implementation depends of requirements.

In this recipe we’ll describe some typical cases of language selection and
provide ideas and code snippets so you’ll be able to pick what’s required and
implement it in your project.

11.1.1 How to set application language

Setting application language is pretty simple. It can be done either via code
like the following:
Yii::$app->language = ’ru_RU’;

or via application config such as config/main.php:
return [

// ...
’language’ => ’ru_RU’,

];

Note that it should be done every request before any output in order for out-
putted content to be affected. Good places to consider are custom UrlManager,
custom UrlRule, controller’s or module’s beforeAction() or application boot-
strap.

11.1.2 Detecting language automatically

Detecting language automatically could help your application to conquer
international markets if done properly. The following code shows selecting a
language using information supplied by user’s browser and a list of languages
your application supports:

83

84 CHAPTER 11. I18N

$supportedLanguages = [’en’, ’ru’];
$languages = Yii::$app->request->getPreferredLanguage($supportedLanguages);

Note that language should be set prior to controller action so it’s a good idea
to create language selection component:

namespace app\components;
use yii\base\BootstrapInterface;
class LanguageSelector implements BootstrapInterface
{

public $supportedLanguages = [];

public function bootstrap($app)
{

$preferredLanguage = $app->request->getPreferredLanguage($this->
supportedLanguages);

$app->language = $preferredLanguage;
}

}

In order to use the component you should specify it in the application config
like the following:

return [
’bootstrap’ => [

[
’class’ => ’app\components\LanguageSelector’,
’supportedLanguages’ => [’en_US’, ’ru_RU’],

],
],
// ...

];

As was mentioned above, it could be implemented in custom UrlManager,
custom UrlRule or controller’s / module’s beforeAction() instead.

11.1.3 Support selecting language manually

While it sounds like a great idea to always detect language, it’s usually not
enough. Detection could fail so user will get language he doesn’t know, user
may know many languages but prefer, for example, English for information
about travelling. These problems could be solved by providing visible enough
language selector that somehow remembers what was selected and uses it for
the application further.

So the solution consists of three parts:

1. Language selector.

2. Storing what was selected.

3. Reusing what was stored.

11.1. SELECTING APPLICATION LANGUAGE 85

Let’s start with language selector widget. Overall it’s a simple select widget
pre-filled with an array of language code => language name pairs.

<?= Html::beginForm() ?>
<?= Html::dropDownList(’language’, Yii::$app->language, [’en-US’ => ’English

’, ’zh-CN’ => ’Chinese’]) ?>
<?= Html::submitButton(’Change’) ?>
<?= Html::endForm() ?>

Form handling should be done in controller. A good place to do it is
SiteController::actionLanguage:

$language = Yii::$app->request->post(’language’);
Yii::$app->language = $language;

$languageCookie = new Cookie([
’name’ => ’language’,
’value’ => $language,
’expire’ => time() + 60 * 60 * 24 * 30, // 30 days

]);
Yii::$app->response->cookies->add($languageCookie);

We’re using cookie to store the language. But it could be, for example,
database:

$user = Yii::$app->user;
$user->language = $language;
$user->save();

Now we can improve LanguageSelector a bit:

namespace app\components;
use yii\base\BootstrapInterface;

class LanguageSelector implements BootstrapInterface
{

public $supportedLanguages = [];

public function bootstrap($app)
{

$preferredLanguage = isset($app->request->cookies[’language’]) ? (
string)$app->request->cookies[’language’] : null;

// or in case of database:
// $preferredLanguage = $app->user->language;

if (empty($preferredLanguage)) {
$preferredLanguage = $app->request->getPreferredLanguage($this->

supportedLanguages);
}

$app->language = $preferredLanguage;
}

}

86 CHAPTER 11. I18N

11.1.4 Language in URL / subdomain

So far we’ve found a way to detect language, select it manually and store it.
For intranet applications and applications for which search engine indexing
isn’t important, it is already enough. For others you need to expose each
application language to the world.

The best way to do it is to include language in the URL such as http://

example.com/ru/about or subdomain such as http://ru.example.com/about.
The most straightforward implementation is about creating URL man-

ager rules for each URL you have. In these rules you need to define language
part i.e.:

’<language>/<page>’ => ’site/page’,

The con of this approach is that it is repetitive. You have to define it for
all URLs you have and you have to put current language to parameters list
each time you’re creating an URL such as:

<?= Html::a(’DE’, [’post/view’, ’language’ => ’de’]); ?>

Thanks to Yii we have an ability to replace default URL class with our own
right from config file:

return [
’components’ => [

’urlManager’ => [
’ruleConfig’ => [

’class’ => ’app\components\LanguageUrlRule’
],

],
],

];

Here’s what language aware URL rule class could look like:

class LanguageUrlRule extends UrlRule
{

public function init()
{

if ($this->pattern !== null) {
$this->pattern = ’<language>/’ . $this->pattern;
// for subdomain it should be:
// $this->pattern = ’http://<language>.example.com/’ . $this->

pattern,
}
$this->defaults[’language’] = Yii::$app->language;
parent::init();

}
}

11.2. USING IDS AS TRANSLATION SOURCE 87

Ready to use extension

yii2-localeurls extension1 implements reliable and quite customizable way of
handling language in URLs.

11.2 Using IDs as translation source

Default way of translating content in Yii is to use English as a source lan-
guage. It is quite convenient but there’s another convenient way some de-
velopers prefer: using IDs such as thank.you.

11.2.1 How to do it

Using keys is very easy. In order to do it, specify sourceLanguage as key in
your message bundle config and then set forceTranslation to true:
’components’ => [

// ...
’i18n’ => [

’translations’ => [
’app*’ => [

’class’ => ’yii\i18n\PhpMessageSource’,
//’basePath’ => ’@app/messages’,
’sourceLanguage’ => ’key’, // <--- here
’forceTranslation’ => true, // <--- and here
’fileMap’ => [

’app’ => ’app.php’,
’app/error’ => ’error.php’,

],
],

],
],

],

Note that you have to provide translation for the application language (which
is en_US by default) as well.

11.2.2 How it works

Setting sourceLanguage to key makes sure no language will ever match so
translation will always happen no matter what.

1https://github.com/codemix/yii2-localeurls

https://github.com/codemix/yii2-localeurls

88 CHAPTER 11. I18N

Chapter 12

Performance

12.1 Implementing backgroud tasks (cronjobs)

There are at least two ways to run scheduled background tasks:
• Running console application command.
• Browser emulation.

Scheduling itself is the same for both ways. The difference is in actually
running a command.

Under Linux and MacOS it’s common to use cronjobs1. Windows users
should check SchTasks or at2.

12.1.1 Running console application command

Running console application command is preferred way to run code. First,
implement Yii’s console command3. Then add it to crontab file:

42 0 * * * php /path/to/yii.php hello/index

In the above /path/to/yii is full absolute path to yii console entry script.
For both basic and advanced project templates it’s right in the project root.
Then follows usual command syntax.

42 0 * * * is crontab’s configuration specifying when to run the com-
mand. Refer to cron docs and use crontab.guru4 service to verify syntax.

Browser emulation

Browser emulation may be handy if you don’t have access to local crontab,
if you’re triggering command externally or if you need the same environment
as web application has.

1https://en.wikipedia.org/wiki/Cron
2http://technet.microsoft.com/en-us/library/cc725744.aspx
3http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html
4http://crontab.guru/

89

https://en.wikipedia.org/wiki/Cron
http://technet.microsoft.com/en-us/library/cc725744.aspx
http://www.yiiframework.com/doc-2.0/guide-tutorial-console.html
http://crontab.guru/

90 CHAPTER 12. PERFORMANCE

The difference here is that instead of console controller you’re putting
your code into web controller and then fetching corresponding page via one
of the following commands:
GET http://example.com/cron/
wget -O - http://example.com/cron/
lynx --dump http://example.com/cron/ >/dev/null

Note that you should take extra care about security since web controller is
pretty much exposed. A good idea is to pass special key as GET parameter
and check it in the code.

12.2 Running Yii 2.0 on HHVM

HHVM is an alternative PHP engine made by Facebook which is performing
significantly better than current PHP 5.6 (and much better than PHP 5.5 or
PHP 5.4). You can get 10–40for virtually any application. For processing-
intensive ones it could be times faster than with usual Zend PHP.

12.2.1 Linux only

HHVM is linux only. It doesn’t have anything for Windows and for MacOS
it works in limited mode without JIT compiler.

12.2.2 Installing HHVM

Installing is easy. Here’s how to do it for Debian:
sudo apt-key adv --recv-keys --keyserver hkp://keyserver.ubuntu.com:80 0

x5a16e7281be7a449
echo deb http://dl.hhvm.com/debian wheezy main | sudo tee /etc/apt/sources.

list.d/hhvm.list
sudo apt-get update
sudo apt-get install hhvm

Instructions for other distributions are available5.

12.2.3 Nginx config

You can have both HHVM and php-fpm on the same server. Switching
between them using nginx is easy since both are working as fastcgi. You can
even have these side by side. In order to do it you should run regular PHP
on one port and HHVM on another.
server {

listen 80;
root /path/to/your/www/root/goes/here;

5https://github.com/facebook/hhvm/wiki/Getting-Started

https://github.com/facebook/hhvm/wiki/Getting-Started

12.2. RUNNING YII 2.0 ON HHVM 91

index index.php;
server_name hhvm.test.local;

location / {
try_files $uri $uri/ /index.php?$args;

}

location ~ \.php$ {
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root/$fastcgi_script_name;
fastcgi_pass 127.0.0.1:9001;
try_files $uri =404;

}
}

server {
listen 80;
root /path/to/your/www/root/goes/here;

index index.php;
server_name php.test.local;

location / {
try_files $uri $uri/ /index.php?$args;

}

location ~ \.php$ {
include fastcgi_params;
fastcgi_param SCRIPT_FILENAME $document_root/$fastcgi_script_name;
fastcgi_pass 127.0.0.1:9000;
try_files $uri =404;

}
}

As you can see, configurations are identical except port number.

12.2.4 Test it first

HHVM is more or less tested to work with most frameworks out there6. Yii
isn’t exception. Except minor issues everything should work. Still, there are
many incompatibilities compared to PHP7 so make sure to test application
well before going live.

12.2.5 Error reporting

HHVM behavior about errors is different than PHP one so by default you’re
getting nothing but a blank white screen instead of an error. Add the fol-
lowing to HHVM config to fix it:
hhvm.debug.server_error_message = true

6http://hhvm.com/frameworks/
7https://github.com/facebook/hhvm/labels/php5%20incompatibility

http://hhvm.com/frameworks/
https://github.com/facebook/hhvm/labels/php5%20incompatibility

92 CHAPTER 12. PERFORMANCE

12.3 Caching

Yii supports different caching mechanisms. In this recipe we’ll describe how
to solve typical caching tasks.

12.3.1 PHP variables caching using APC extension

Configure cache component in Yii application config file:

’cache’ => [
’class’ => ’yii\caching\ApcCache’,

],

After that you can cache data by this way:

$key = ’cacheKey’
$data = Yii::$app->cache->get($key);

if ($data === false) {
// $data is not found in cache, calculate it from scratch

// store $data in cache so that it can be retrieved next time
$cache->set($key, $data);

}

Error Call to undefined function yii\caching\apc_fetch()means that you have
problems with APC extension. Refer PHP APC manual8 for the details.

If cache doesn’t work ($data is always false) check apc.shm_size property
in php.ini. Probably your data size is more than allowed by this parameter.

12.3.2 HTTP caching for assets and other static resources

If expiration not specified for cacheable resources (.js, .css, .etc.) a speed of
page loading process may be very slow. Such tool as PageSpeed Insights for

Chrome determines expiration not specified problem as crucial for yii web
page performance. It advices you to Leverage browser caching. You can do it
by adding only one row to your application asset manager component:

return [
// ...
’components’ => [

’assetManager’ => [
’appendTimestamp’ => true,

],
],

];

8http://php.net/manual/en/book.apc.php

http://php.net/manual/en/book.apc.php

12.4. CONFIGURING A YII2 APPLICATION FOR AN MULTIPLE SERVERS STACK93

12.4 Configuring a Yii2 Application for an Multiple
Servers Stack

These instructions are focused on configuring Yii2 to be a stateless applic-
ation. Stateless application means each of your servers should be the exact
same copy as possible. They should not store data in the instance. Stateless
instances means more scalable architecture. Current deployment method
described is pretty basic. More efficient and complex deployment methods
may be described in the future.

Generally in web development, scaling means horizontal scaling, adding
more servers to handle more amount of traffics. This can be done manually or
automatically in popular deployment platform. In autoscaled environment,
the platform can detect large amount of traffics and handle it by temporarily
adding additional servers.

To set up a scalable application, the application needs to be made state-
less, generally nothing should be written directly to the application hosting
server, so no local session or cache storage. The session, cache, and database
needs to be hosted on dedicated server.

Setting up a Yii2 application for auto scaling is fairly straight forward:

12.4.1 Prerequisites

• Any well performing PaaS (Platform as a Service) solution that sup-
ports autoscaling, load balancing, and SQL databases. Examples of
such PaaS are Google Cloud through its Instance Group and Load
Balancer or Amazon Web Services using its AutoScaling Group and
Elastic Load Balancer.

• Dedicated Redis or Memcached server. Easily launched on popular
PaaS platforms with Bitnami Cloud9. Redis generally performs better
over Memcached, so this page will be focusing on working with Redis.

• Dedicated database server (Most PaaS platforms let you easily launch
one i.e. Google SQL or AWS Relational Database Service).

12.4.2 Making Your Application Stateless

Use a Yii2 supported Session Storage/Caching/Logging service such as Re-
dis. Refer to the following resources for further instructions:

• Yii2 Class yii\redis\Session10

• Yii2 Class yii\redis\Cache11

• Yii2 Redis Logging Component12

9https://bitnami.com/cloud
10http://www.yiiframework.com/doc-2.0/yii-redis-session.html
11http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
12https://github.com/JackyChan/yii2-redis-log

https://bitnami.com/cloud
http://www.yiiframework.com/doc-2.0/yii-redis-session.html
http://www.yiiframework.com/doc-2.0/yii-redis-cache.html
https://github.com/JackyChan/yii2-redis-log

94 CHAPTER 12. PERFORMANCE

When you run on a PaaS platform, make sure to use the Redis server’s
internal IP and not the external IP. This is essential for your application’s
speed.

A redis server doesn’t require much disk space. It runs on RAM. This
guide recommends any new application to start with at least 1GB RAM, and
vertically scaling up the instance (i.e. upgrade to a more RAM) depending
on usage. You can measure your RAM usage by SSH’ing into the redis server
and running top.

Also configure your application to use your hosted database server (hos-
ted by i.e. Google SQL).

12.4.3 Configuring the Stack

The instructions below may be subject to change and improvement.
Set up a temporary single instance server to configure your application

with.
The application must be deployed to the server by Git, so that multiple

servers will stay up to date with the application. This guide recommends
the following process:

• git clone the application into the configured www directory. The publicly
accessed directory path can be varied depending on the platform.

• Set up a cron job to git pull the directory every minute.
• Set up a cron job to composer install the directory every minute.

When the application is up and running on the temporary server, create a
snapshot of the server and use it to create your scalable server group.

Most PaaS platforms such as Google Cloud Managed Instance Groups
and Amazon Elastic Beanstalk let you configure ‘start up’ commands. The
start up command should also install/update the application (using git clone

or git pull depending on if the service image already contains the applica-
tion’s git or not), and a composer install command to install all composer
packages.

When the server group is set up using a disk based on the snapshot
from the temporary server instance, you can remove the temporary server
instance.

Your server group is now configured. Set up a load balancer on your
PaaS platform (i.e. Load Balancer on Google) for the server group, andset
your domain’s A or CNAME records to your load balancer’s static IP.

The mechanism described above is really simple yet sufficient enough to
have your application up and running. There can be another process in-
corporated in the mechanism such as deployment failure prevention, version
rollback, zero downtime, etc. These will be described in another topic.

There are couple of deployment mechanism that is provided by different
platform such as Google Cloud or Amazon Web Services. These also will be
described in another topic.

12.4. CONFIGURING A YII2 APPLICATION FOR AN MULTIPLE SERVERS STACK95

12.4.4 Assets Management

By default Yii generate assets on the fly and store in web/assets directory
with names that depends on the file created time. If you deploy in multiple
servers, the deployment time in each server can be different even by several
seconds. This can be caused by the difference of latency to the code storage
or other factors or especially in autoscaling environment when a new instance
can be spun hours after last deployment.

This can cause inconsistencies for URLs generated by different servers for
a single asset. Setting the server affinity in the load balancer can avoid this,
meaning requests by same user will be directed to the very same server hit by
the first request. But this solution is not recommended since you may cache
the result of your page in a persistent centralized storage. Furthermore,
in autoscaling environment underutilized server can be shut down anytime
leaving the next requests served by different server that generated different
URL.

A more robust solution is by configuring hashCallback in AssetManager13

so it will not depend on time, rather an idempotent function.
For example, if you deploy your code in exact path in all servers, you can

configure the hashCallback to something like
$config = [

’components’ => [
’assetManager’ => [

’hashCallback’ => function ($path) {
return hash(’md4’, $path);

}
]

]
];

If you use HTTP caching configuration in your Apache or NGINX server to
serve assets like JS/CSS/JPG/etc, you may want to enable the appendTimestamp
14 so that when an asset gets updated the old asset will be invalidated in the
cache.
$config = [

’components’ => [
’assetManager’ => [

’appendTimestamp’ => true,
’hashCallback’ => function ($path) {

return hash(’md4’, $path);
}

]
]

];

13http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#
%24hashCallback-detail

14http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#
%24appendTimestamp-detail

http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#%24hashCallback-detail
http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#%24hashCallback-detail
http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#%24appendTimestamp-detail
http://www.yiiframework.com/doc-2.0/yii-web-assetmanager.html#%24appendTimestamp-detail

96 CHAPTER 12. PERFORMANCE

Load balancing without server affinity increases scalability but raises one
more issue regarding the assets: assets availability in all servers. Consider
request 1 for a page is being received by server A. Server A will generate
assets and write them in local directory. Then the HTML output returned
to the browser which then generates request 2 for the asset. If you configure
the server affinity, this request will hit server A given the server is still
available and the server will return the requested asset. But in this case the
request may or may not hit server A. It can hit server B that still has not
generated the asset in local directory thus returning 404 Not Found. Server
B will eventually generate the assets. The more servers you have the longer
time they need to catch up with each others and that increases the number
of 404 Not Found for the assets.

The best thing you can do to avoid this is by using Asset Combination
and Compression15. As described above, when you deploy your application,
generally deployment platform can be set to execute hook such as composer

install. Here you can also execute asset combination and compression using
yii asset assets.php config/assets-prod.php. Just remember everytime you
add new asset in your application, you need to add that asset in the asset.

php configuration.

15http://www.yiiframework.com/doc-2.0/guide-structure-assets.html#
combining-compressing-assets

http://www.yiiframework.com/doc-2.0/guide-structure-assets.html#combining-compressing-assets
http://www.yiiframework.com/doc-2.0/guide-structure-assets.html#combining-compressing-assets

Chapter 13

External code

13.1 Using Yii in third party apps

Legacy code. It happened to all of us. It’s hard but we still need to deal with
it. Would it be cool to gradually move from legacy towards Yii? Absolutely.

In this recipe you’ll learn how to use Yii features in an existing PHP
application.

13.1.1 How to do it

First of all, we need Yii itself. Since existing legacy application already takes
care about routing, we don’t need any application template. Let’s start with
composer.json. Either use existing one or create it:

{
"name": "mysoft/mylegacyapp",
"description": "Legacy app",
"keywords": ["yii2", "legacy"],
"homepage": "http://www.example.com/",
"type": "project",
"license": "Copyrighted",
"minimum-stability": "dev",
"require": {

"php": ">=5.4.0",
"yiisoft/yii2": "*"

},
"config": {

"process-timeout": 1800
},
"extra": {

"asset-installer-paths": {
"npm-asset-library": "vendor/npm",
"bower-asset-library": "vendor/bower"

}
}

}

97

98 CHAPTER 13. EXTERNAL CODE

Now run composer install and you should get Yii in vendor directory.

Note: The dir should not be accessible from the web. Either
keep it out of webroot or deny directory access.

Now create a file that will initialize Yii. Let’s call it yii_init.php:
<?php
// set it to false when in production
defined(’YII_DEBUG’) or define(’YII_DEBUG’, true);

require(__DIR__ . ’/vendor/autoload.php’);
require(__DIR__ . ’/vendor/yiisoft/yii2/Yii.php’);

$config = require(__DIR__ . ’/config/yii.php’);

new yii\web\Application($config);

Now create a config config/yii.php:
<?php

return [
’id’ => ’myapp’,
’basePath’ => dirname(__DIR__),
’bootstrap’ => [’log’],
’components’ => [

’request’ => [
// !!! insert a secret key in the following (if it is empty) -

this is required by cookie validation
’cookieValidationKey’ => ’’,

],
’cache’ => [

’class’ => ’yii\caching\FileCache’,
],
’user’ => [

’identityClass’ => ’app\models\User’,
’enableAutoLogin’ => true,

],
’log’ => [

’traceLevel’ => YII_DEBUG ? 3 : 0,
’targets’ => [

[
’class’ => ’yii\log\FileTarget’,
’levels’ => [’error’, ’warning’],

],
],

],
],
’params’ => [],

];

That’s it. You can require the file and mix Yii code into your legacy app:
// legacy code

13.1. USING YII IN THIRD PARTY APPS 99

$id = (int)$_GET[’id’];

// new code
require ’path/to/yii_init.php’;

$post = \app\models\Post::find()->where[’id’ => $id];

echo Html::encode($post->title);

13.1.2 How it works

In the yii_init.php we are including framework classes and composer auto-
loading. Important part there is that ->run() method isn’t called like it’s
done in normal Yii application. That means that we’re skipping routing,
running controller etc. Legacy app already doing it.

100 CHAPTER 13. EXTERNAL CODE

Chapter 14

Tools

14.1 IDE autocompletion for custom components

Using IDE for development is quite typical nowadays because of the comfort
it provides. It detects typos and errors, suggests code improvements and, of
course, provides code autocomplete. For Yii 2.0 it works quite good out of
the box but not in case of custom application components i.e. Yii::$app->

mycomponent->something.

14.1.1 Using custom Yii class

The best way to give IDE some hints is to use your own Yii file which isn’t
actually used when running code. This file could be named Yii.php and the
content could be the following:
<?php
/**
* Yii bootstrap file.
* Used for enhanced IDE code autocompletion.
*/

class Yii extends \yii\BaseYii
{

/**
* @var BaseApplication|WebApplication|ConsoleApplication the
application instance
*/

public static $app;
}

/**
* Class BaseApplication
* Used for properties that are identical for both WebApplication and

ConsoleApplication
*
* @property \app\components\RbacManager $authManager The auth manager for

this application. Null is returned if auth manager is not configured.
This property is read-only. Extended component.

101

102 CHAPTER 14. TOOLS

* @property \app\components\Mailer $mailer The mailer component. This
property is read-only. Extended component.

*/
abstract class BaseApplication extends yii\base\Application
{
}

/**
* Class WebApplication
* Include only Web application related components here
*
* @property \app\components\User $user The user component. This property is

read-only. Extended component.
* @property \app\components\MyResponse $response The response component.

This property is read-only. Extended component.
* @property \app\components\ErrorHandler $errorHandler The error handler

application component. This property is read-only. Extended component.
*/

class WebApplication extends yii\web\Application
{
}

/**
* Class ConsoleApplication
* Include only Console application related components here
*
* @property \app\components\ConsoleUser $user The user component. This

property is read-only. Extended component.
*/

class ConsoleApplication extends yii\console\Application
{
}

In the above PHPDoc of BaseApplication, WebApplication, ConsoleApplication
will be used by IDE to autocomplete your custom components described via
@property.

Note: To avoid “Multiple Implementations” PHPStorm warning
and make autocomplete faster exclude or “Mark as Plain Text”
vendor/yiisoft/yii2/Yii.php file.

That’s it. Now Yii::$app->user will be our \app\components\User component
instead of default one. The same applies for all other @property-declared
components.

14.1.2 Custom Yii class autogeneration

You can generate custom Yii class automatically, using the components defin-
itions from the application config. Check out bazilio91/yii2-stubs-generator1

extention.
1https://github.com/bazilio91/yii2-stubs-generator

https://github.com/bazilio91/yii2-stubs-generator

14.2. USING CUSTOM MIGRATION TEMPLATE 103

Customizing User component

In order to get autocompletion for User’s Identity i.e. Yii::$app->user->

identity, app\components\User class should look like the following:

<?php

namespace app\components;

use Yii;

/**
* @inheritdoc
*
* @property \app\models\User|\yii\web\IdentityInterface|null $identity The

identity object associated with the currently logged-in user. null is
returned if the user is not logged in (not authenticated).

*/
class User extends \yii\web\User
{
}

As a result, Yii config file may look this way:

return [
...
’components’ => [

/**
* User
*/

’user’ => [
’class’ => ’app\components\User’,
’identityClass’ => ’app\models\User’,

],
/**
* Custom Component
*/

’response’ => [
’class’ => ’app\components\MyResponse’,

],
],

];

14.2 Using custom migration template

For many cases it’s useful to customize code that’s created when you run ./

yii migrate/create. A good example is migrations for MySQL InnoDB where
you need to specify engine.

104 CHAPTER 14. TOOLS

14.2.1 How to do it

First of all, copy standard template i.e. framework/views/migration.php to your
app. For example, to views/migration.php.

Then customize template:

<?php
/**
* This view is used by console/controllers/MigrateController.php
* The following variables are available in this view:
*/

/* @var $className string the new migration class name */

echo "<?php\n";
?>

use yii\db\Migration;

class <?= $className ?> extends Migration
{

public function up()
{

$tableOptions = null;
if ($this->db->driverName === ’mysql’) {

// http://stackoverflow.com/questions/766809/whats-the-
difference-between-utf8-general-ci-and-utf8-unicode-ci

$tableOptions = ’CHARACTER SET utf8 COLLATE utf8_unicode_ci
ENGINE=InnoDB’;

}

}

public function down()
{

echo "<?= $className ?> cannot be reverted.\n";

return false;
}

/*
// Use safeUp/safeDown to run migration code within a transaction
public function safeUp()
{
}

public function safeDown()
{
}
*/

}

Now in your console application config, such as config/console.php specify
new template to use:

14.2. USING CUSTOM MIGRATION TEMPLATE 105

return [
...

’controllerMap’ => [
’migrate’ => [

’class’ => ’yii\console\controllers\MigrateController’,
’templateFile’ => ’@app/views/migration.php’,

],
],

...
];

That’s it. Now ./yii migrate/create will use your template instead of stand-
ard one.

	Preface
	Unnoticed basics
	Logging and error handling
	Logging: problems and solutions

	Web essentials
	URLs with variable number of parameters
	Working with different response types
	Managing cookies
	Handling incoming third party POST requests

	SEO essentials
	Enable pretty URLs
	Pagination pretty URLs
	Adding SEO tags
	Canonical URLs
	Using redirects
	Using slugs
	Handling trailing slash in URLs

	Forms
	Using and customizing CAPTCHA
	Working with ActiveForm via JavaScript
	Uploading files
	Custom validator for multiple attributes

	Security
	SQL injection
	XSS
	RBAC
	CSRF

	Structuring and organizing code
	Structure: backend and frontend via modules
	Asset processing with Grunt
	Using global functions
	Processing text
	Implementing typed collections
	MVC
	SOLID
	Dependencies

	View
	Reusing views via partials
	Switching themes dynamically
	Post-processing response

	Models
	Active Record
	Single table inheritance

	i18n
	Selecting application language
	Using IDs as translation source

	Performance
	Implementing backgroud tasks (cronjobs)
	Running Yii 2.0 on HHVM
	Caching
	Configuring a Yii2 Application for an Multiple Servers Stack

	External code
	Using Yii in third party apps

	Tools
	IDE autocompletion for custom components
	Using custom migration template

